二阶微分方程求解,二阶微分方程求解例题

http://www.itjxue.com  2023-01-09 00:03  来源:未知  点击次数: 

二阶常微分方程怎么解

求解该方程的核心在于找到两个线性无关的特解。

因为p,q为常数,所以,y”,y‘ ,y具有相同的结构,只有这样才能够使得等式右端为0,即y” =ay‘ ,y‘ =by,有这种形式的方程只有指数方程。y=erx,将指数方程代入即可得到r2erx+prerx+qerx=0,又因为erx永远不等于0,所以r2+pr+q=0,即将原方程转化为求解该特征方程的解,这个特征方程用求根公式即可求解,求出r1,r2后再将代回指数方程,且这两个解线性无关,所以通解为y=C1er1x+C2er2x.,以上就是二阶常系数齐次线性微分方程特征方程有两个不同解的解法。

二阶微分方程的3种通解公式是什么?

二阶微分方程的3种通解公式是y=C1cos2x+C2sin2x-xsin2x,n阶微分方程就带有n个常数,Y=C1 e^(x/2)+C2 e^(-x)。

第一种是由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是y=C1cos2x+C2sin2x-xsin2x。

第二种是通解是一个解集包含了所有符合这个方程的解,n阶微分方程就带有n个常数,与是否线性无关。

第三种是先求对应的齐次方程2y''+y'-y=0的通解,特征方程为2r2+r-1=0,(2r-1)(r+1)=0,r=1/2或r=-1。故通解为Y=C1 e^(x/2)+C2 e^(-x)。

二阶微分方程

对于一元函数来说,如果在该方程中出现因变量的二阶导数,我们就称为二阶微分方程,其一般形式为F(x,y,y',y'')=0。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。

在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。

二阶微分方程的通解公式

二阶微分方程的通解公式:y''+py'+qy=f(x),其中p,q是实常数。

自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的。若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

举例

求微分方程:y"-4y'+3y=(x^2-1)e^(3x)的通解。

第一步,先求特征方程r^2-4r+3=0的根,解得r1=3, r2=1。因此齐次方程的通解是Y=C1e^(3x)+C2e^x。

又λ=3是特征方程的一个根,因此设非齐次方程的特解y*=(ax^3+bx^2+cx)e^(3x),代入原微分方程,可得6ax+2b+2(3ax^2+2bx+c)=x^2-1. 化简得6ax^2+(6a+4b)x+(2b+2c)=x^2-1,因此a=1/6, b=-1/4, c=-1/4。原微分方程的通解为:y=C1e^(3x)+C2e^x+(x^3/6-x^2/4-x/4)e^(3x)。

二阶微分方程怎么求其通解?

二阶微分方程的3种通解公式如下:

第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。

第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。

第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。

举例说明

求微分方程2y''+y'-y=0的通解。

先求对应的齐次方程2y''+y'-y=0的通解,特征方程为2r2+r-1=0,(2r-1)(r+1)=0,r=1/2或r=-1,故通解为Y=C1 e^(x/2)+C2 e^(-x)。

因为1不是特征根,所以设原方程的特解为y*=Ae^x,则y*'=y*''=Ae^x,代入原方程得,2Ae^x=2e^x,A=1,故y*=e^x。

所以原方程的通解为y=Y+y*,即y=C1 e^(x/2)+C2 e^(-x)+e^x。

二阶微分方程解法总结是什么?

二阶微分方程解法总结:可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。

多项式法:

设常系数线性微分方程y''+py'+qy =pm,(x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) ,则方程可化为:F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式。

升阶法:

设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得:

y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……

y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!

y^(n+2)+py^(n+1)+qy^(n)=a0n!

令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一个特解y(x)。

对于一元函数来说,如果在该方程中出现因变量的二阶导数,我们就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。

二阶微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶微分方程。

若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

二阶常微分方程

1、二阶常系数线性微分方程 标准形式:?y″+py′+qy=f(x)

当?f(x)=0,即?y″+py′+qy=0为二阶常系数齐次线性微分方程

当?f(x)≠0,即?y″+py′+qy=f(x)为二阶常系数非齐次线性微分方程

2、特征方程:一元二次方程?r2+pr+q=0

微分方程:?y″+py′+qy=0

特征方程:?r2+pr+q=0?特征根:?r1,2=?b±b2?4ac2a

3、二阶常系数齐次线性微分方程求解方法?y″+py′+qy=0

求解步骤:

(1)写出特征方程?r2+pr+q=0

(2)求出特征根?r1,r2

(3)代入通解公式,写出通解

(责任编辑:IT教学网)

更多

相关3DMAX教程文章

推荐3DMAX教程文章