spss假设检验的基本思路,spss怎么假设检验
假设检验的基本思想是什么?
假设检验的基本思想是小概率反证思想。
根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知。
由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
假设检验的方法
假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件(P0.01或P0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为不假设成立。
假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。
SPSS中的均值比较—假设检验
前一段时间给大家整体的分享了关于如何使用SPSS来进行描述性统计分析,当时一共是分了三节内容,不知道大家有没有在空闲的时间好好的练习掌握一下。
在给大家分享完关于描述性统计分析的章节以后,我们接下来会用一段时间来给大家分享一下关于如何用SPSS来进行均值比较。关于均值比较在SPSS中是一个比较常见的分析方法,在这里面最常见的方法就是T检验,分别有单样本T检验、独立样本T检验和配对样本T检验。在学习这些检验方法之前,我们首选需要了解假设检验这个概念,因为不仅仅是在均值比较中,在后面的其他分析中我们也是随时会用到假设检验的思想。
假设检验的理论及原理
假设某个企业生产一种电子元件,在进行抽检的时候,企业的质检员说该企业的产品故障率只有千分之一。但是我们在检验的时候发现,从1000个电子元件中随机拿出来了5个,调试以后发现其中有2个发生了故障。这说明什么呢?
其实,如果企业的质检员说的确实是正确的,那照理来说1000个电子原件中应该只有1个会发生故障,这个我们称之为原假设。在这个情况下,我们是不可能出现检验到2个甚至2个以上的电子原件会发生故障,也就是说这种情况发生的概率应该是0。在统计学中,概率极小的事件我们称之为小概率事件。所以说,我们从1000个电子元件中随机拿出来5个进行检验,然后其中有2个发生了故障,也就是说小概率事件发生了。所以这个时候我们的结论是质检员说的话是不正确的,检验的结果没有支持他的判断。
但是如果我们换一种情况,在我们检验这1000个电子元件之前,质检员跟我们说这批电子元件的故障率是1%,我们依然从随机选择的5个电子元件中发现有2个是出现故障了,那这个时候又说明了什么呢?其实这个时候就应该有两个结论:
①:这批商品的故障率远高于1%,质量不可靠;
②:这批商品的故障率确实是1%,只是我们碰巧拿到了有故障的元件而已。
这个时候我们就应该来进行计算,按1%的故障率来说,1000个元件就应该有10个元件是会出现故障的,我们在5个里面发现2个产生了故障,这个情况的概率应该是0.088%(大家可以自己计算一下)。这样一对比,我们就会发现其实这是一个小概率事件而已。
在我们的原假设成立的条件下,如果我们分析计算出来的对应事件概率比较大,那就不能拒绝原假设。如果结果相反,那就说明小概率事件发生了。正常来说,小概率事件在一次实验中是几乎不可能会发生的,但是正常不可能发生的事件确实发生了。那么我们只能说我们的结果不能够支持我们的假设,也就是说质检员1%故障率的说法也是错误的。
上面的例子其实就是我们假设检验的原理:反证法以及小概率原理。反证法的意思就是说,我们在检验之前,先假定原假设是正确的,然后我们根据这个来得到我们的分析结论,如果我们得到的分析结论与原假设中的结论是矛盾的(根据小概率原理),我们就可以说原假设其实是不能成立的,或者一般在分析中我们叫拒绝原假设。虽然我们在做假设检验的时候依据是“小概率事件在一次实验中是几乎不可能会发生的”这个原理,但是小概率时间并不代表没有概率,也就是说它依旧是可能发生的,只是发生的概率很小而已。所以我们在做假设检验的时候会遇到两类问题:
1.原假设是正确的,但是我们根据结果错误的拒绝了原假设,在这个时候这个事件出现的概率也就是我们出现问题的概率。在前面的例子中,如果第二次检验电子元件的合格率确实是1%,但是我们认为这批元件的合格率大于1%,那我们就出现了第一种问题,同时出现这个问题的概率是0.088%。
2.原假设是错误的,但是我们根据结果并没有拒绝原假设,那这个事件发生的概率也就是这类问题出现的概率。
当我们在进行假设检验时,我们无法避免出现这两个问题,或者说降低出现这两类问题的概率。因为如果我们降低了其中一类问题的概率,那另外一类问题的概率就会随之增加。在一开始的举例中,企业是希望我们不要把无故障的元件误判为有故障,也就是说要降低企业的风险。其实在我们实际分析中,我们在第一类问题上面会受到更多的重视,我们会想把这个情况控制在一定的水平。而这个水平我们就将它称为显著性水平,在分析中用α表示。一般我们以0.05或者0.01等数字来表示它(根据实际情况来进行选择)。
正常的数据分析中,假设检验一般是先针对总体样本的均值、比例或者分布来做出假设,也就是我们说的原假设。然后我们会计算在该假设成立的前提下出现这种情况的概率,我们将它叫做P值。如果在实验的过程中小概率时间发生了,也就是说Pα,那就说明结果不支持原假设,我们应该拒绝原假设。在使用SPSS的时候,将这种概率称为显著性的值。反之如果Pα,那我们就接受原假设。在这个里面的α是我们用来把控第一类问题出现的概率,也就是出现这一类问题的概率最大为α。
最后我们来整理一下假设检验的分析步骤:
1.确定分析对应的原假设和与之对应的备用假设。
2.选择我们用来进行假设检验的对应统计量。
3.对选择出来的统计量进行计算并检验,得到P值。
4.确定显著性水平α。如果pα,拒绝原假设。反之,接受原假设。
在我们的实际分析中,许多时候我们进行假设检验都是用来比较两个总体的均值。并且均值的比较在许多研究中都特别常见,应用也特别广泛。今天我们先整理了解假设检验的理论和原理,可能看起来会有一点绕,大家一定要多思考,这样的话我们对接下来的均值分析以及T检验的分析大家在理解的时候就不会有太大的问题了。
欢迎大家进行补充,大家可以在我们的QQ交流群(514581193)或者微信群中(关注小白数据营公众号后台留言进入)参与讨论和交流。

假设检验简介
在统计分析中经常要对某个假设作出判断,例如判断两个分组的某个指标是否具有差异,差异的程度如何,是否具有统计学意义,这些都需要进行假设检验。 在很多文献的统计检验部分,包括组间差异分析,组间差异检验和差异物种分析部分都需要用到假设检验的内容。 下面简单介绍一下假设检验的一般步骤。首先看下相关的一些基本概念。
我们所关心的参数通常有总体平均数,总体标准差和总体比例等。与总体相对应我们通常关心的统计量有样本平均数、样本标准差、样本比例等。由于总体的无限性和总体参数较难确定,通常可以从总体中随机抽取样本,通过计算样本的统计量来估计总体的参数。例如,我们要判断污染环境中和非污染环境中的微生物具有差异,我们不可能测定两种环境中的所有微生物,因为环境中的微生物是无限的。我们通常是从两种环境中抽取样本,根据样品的一些指标或统计量来判断两种环境具有差异,这就是用样本来估计总体的例子。
在假设检验中,首先需要提出两种假设,即原假设和备选假设。 通常将研究者想收集证据予以反对的假设称为原假设,或称零假设,用 H0 表示。 通常将研究者想收集证据予以支持的假设称为备选假设,或称研究假设,用 H1 表示。 原假设所表达的含义总是表述为组间没有差异,变量之间没有关系。与原假设对立,备选假设通常表述为组间具有差异,药物疗效显著提高等。假设检验的一般思路就是先假定 H0 成立,然后从逻辑从对立面证明真理。
根据样本观测结果计算得到的,并据以对原假设和备选假设作出决策的某个样本统计量,称为检验统计量。 在进行假设检验时,根据检验的目的不同检验统计量有不同的计算方法。检验统计量还取决于所抽取的样本数和总体的分布情况。
当原假设正确时拒绝原假设,所犯的错误称为第Ⅰ类错误。犯第Ⅰ类错误的概率,称为显著性水平记为α。 根据显著性水平确定的拒绝域的边界值,称为临界值。 当总体分布已知时,例如总体服从正态分布,我们可以根据给定的显著性水平(通常为 0.01 或 0.05)查表获得临界值。当总体分布未知时,可以先用 Permutation test 构造经验分布,再根据显著性水平获得临界值。
将第(2)步计算出的检验统计量与(3)步获得的临界值进行比较,作出拒绝或不拒绝原假设的决策。
传统的统计量检验的方法是在检验之前确定显著性水平α,也就意味着事先确定了临界值和拒绝域。这样,不论检验统计量的值是大还是小,只要它的值落入拒绝域就拒绝原假设,否则就不拒绝原假设。 这种给定显著性水平的方法,无法给出观测数据与原假设之间不一致程度的精确度量。要测量出样本观测数据与原假设中假设值的偏离程度,则需要计算 pvalue值。 pvalue 值,也称为观测到的显著性水平,它表示为如果原假设 H0正确时得到实际观测样本结果的概率。pvalue 值越小,说明实际观测到的数据与 H0之间的不一致的程度就越大,检验的结果就越显著 [1]。
[1] 贾俊平,统计学基础[M].中国人民大学出版社,2010.
3. 假设检验的基本思路是什么,请从经济学,管理学不同角度谈谈假设检验的应用背景。
假设检验的基本思路:
1、 理性人(经济人)假设。每个参与者都必须是完全理性的,以个人利益最大化为目标。
2、第二个基本前提假设是信息完全假设。价格机制是传递供求信息的经济机制,信息完全假设具体体现在自由波动的价格上。最大化原则加上完全竞争假设才能推导出信息完全假设。
3、第三个基本前提假设是市场出清假设,它与前两个基本前提假设具有明确的因果关系,是前两者的逻辑推论。现代经济学的发展围绕着对这三个基本前提假设的反思而展开。
假设检验的基本思想:
假设检验的基本思想“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。小概率思想是指小概率事件在一次试验中基本上不会发生。反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。
即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设。
假设检验的步骤是
假设检验分为5个步骤:
1、根据研究问题的要求提出假设,以平均数差异检验为例,可以提出3种类型的假设。
2、选择合适的检验统计量。从样本情况推断总体情况需要根据条件,如抽样的方法、样本容量大小、总体分布是否正态,方差是否已知等,来选择适当的统计量。
3、根据需要选择显著性水平。
4、计算出检验统计量。运用统计学知识和工具SPSS,计算出检验统计量的数值。
5、根据检验统计量做出统计决策。根据显著性水平和统计量的分布,通过相关统计表找出临界值。
常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
简述假设检验的步骤?
一、假设检验的基本思想与步骤
如何被统计学家费舍尔提出:奶茶先加茶和先加奶的口味是不同的。于是科学家有一个原假设:该女士不具备区分奶茶与茶奶的能力。假设检验的基本思想就是小概率事件不会发生,当小概率事件发生时,我们更倾向认为原假设是错误。引入问题:某牛奶生产商在其一份研究报告中声称“中国人的平均身高不高于160 厘米,因而必须喝牛奶”假设所有国人的平均身高服从正态分布N(μ,),如何检验牛奶商关于身高的声称是否成立?
(一) 估计与假设检验的区别
上面不是一个参数估计的问题,必须采用假设检验的方法。假设检验(hypothesis testing)与参数估计(estimation)的思想是不同的。参数估计是指利用抽样数据对总体参数进行直接估计,并得出总体参数的具体估计值;而假设检验则分为假设与检验两步,先形成一个对总体参数的假设,然后再利用抽样数据判断这个假设是否成立。
上题中,参数估计是通过抽样调查部分中国人身高,计算出样本均值,并以此估计全国人的平均身高μ;而假设检验则是先形成一个命题如:“中国人的平均身高μ不高于160 厘米”,然后通过抽样数据判断该命题是否成立。
(二) 假设检验的基本思想
基本思想是“小概率事件不会发生”。假设抽样了一万人发现平均身高是180,,基本可以判断前述是错误的命题。然而如果发现均值是161时那么结论就没那么显然了,就必须利用到概率分布与显著性相关的信息。
(三) 假设检验的步骤
(1) 建立需检验的假设
(2) 选择合适的检验统计量,并确定其服从的概率分布
(3) 选择判断假设是否成立的显著性水平
(4) 给出决策准则(decision rule),即拒绝域的形式
(5) 收集数据,并计算检验统计量
(6) 做出判断
(7) 根据判断进行投资决策
二、假设检验的相关概念
(一)原假设(Null Hypothesis)与备择假设(Alternative Hypothesis)
假设检验的第一步就是建立假设。通常将被检验的假设称为原假设(null hypothesis),记为;当被拒绝时而接受的假设称为备择假设,记为或.原假设与备择假设通常成对出现。身高问题中原假设与备择假设可以用如下方式表示:
假设检验一般有两种结果:第一种是原假设“不正确”,称为拒绝(reject)原假设;第二种是原假设“正确”,称为无法拒绝(can not reject)原假设。
在建立原假设与备择假设时,有几个细节要注意:
(1) 当原假设“正确”时,一般称“无法拒绝原假设”而不是“接受原假设”,这是因为此时原假设并不是数学意义上的恒成立,而只是统计意义上的成立。
(2) 如果假设涉及不等式时,习惯将等号放在原假设
(3) 在构建原假设备择假设时,习惯将想要得到的结论放在备择假设
(二)检验统计量(Test Statistic)及其分布
在抽样样本检验原假设通常是通过一个统计量来完成的,这个统计量称为检验统计量(test statistic)。检验统计量通常服从某个概率分布,于是可以通过计算检验统计量是否超过某一关键值来判断是否拒绝原假设。在本书中,检验统计量通常以公式的形式出现:
(11.1)
如身高问题中,检验统计量就可以通过样本均值来构建。由中心极限定理,服从正态分布N(μ,/n),按照(11.1)标准化后就服从标准正态分布。
(三)显著性水平(Significance Level)与关键值(Critical Value)
有了检验统计量后,结合显著性水平就可以计算出关键值(Critical Value)及其拒绝域(rejection region)。关键值是判断是否拒绝原假设的临界值。拒绝域是由原假设被拒绝的样本观测值所组成的区域。
在例题中,假设显著性水平为5%,的标准化后服从标准正态分布,那么检验统计量的关键值就是1.65?
根据正态分布95%置信区间对应的标准差不是1.96倍标准差吗?为啥是1.65而不是1.96,是正数而不是负数?需要涉及单尾检验与双尾检验。
(四) 双尾检验(Two-Tailed Test)与单尾检验(One-Tailed Test)
假设检验通常有三种基本形式:
其中,θ表示总体参数,θ0表示当成立时总体参数的取值。
第一种形式称为双尾检验,第二种与第三种形式称为单尾检验。无论是单尾还是双尾检验所采用的检验统计量都是相同的,差别主要体现在拒绝域上。因此,区分单尾检验与双尾检验对确定关键值(critical value)以及拒绝域(rejection region)至关重要。
(五) p值(p-value)
除了比较检验统计量与关键值,另一种判断是否拒绝原假设的方法就是p值(p-value)。p值指拒绝原假设的最小显著水平。根据p值定义,在给定显著水平α的情况下,如果p=α,则拒绝原假设;如果pα,则无法拒绝原假设。
例如,我们要进行显著性水平为5%的双尾检验,已知p值=2.14%,这就意味着,左侧对应的尾部面积为1.07%,即统计量绝对值大于,应该要拒绝原假设。当然,也可以利用p值进行判断,p值=2.14%5%,因此应该要拒绝原假设。画个图:
(六) 第一类错误(Type I Error)与第二类错误(Type II Error)
虽然假设检验的基本思想是“小概率事件不会发生”,但在真实世界中小概率事件是有可能发生的。因而,我们在判断假设检验是否成立时就有可能犯错误。检验时可能犯的错误可归为两类:一是当原假设H0真实成立时,我们却拒绝了原假设,称为第一类错误,也称为“拒真概率”;二是当原假设H0不成立时,我们却接受了原假设,称为第二类错误,也称为“受伪概率”。
假设检验的两种错误:
决策
真实情形
H0正确
H0错误
没有拒绝H0
正确决策
第二类错误
(犯错概率=β)
拒绝H0接受Ha
第一类错误
(犯错概率=α)
正确决策
(概率power of test:1-β)
上表有几个关于概率的标识:通常我们将犯第一类错误的概率记为α,这里的α实际上就是假设检验中的显著性水平;犯第二类错误的概率记为β。此外,当原假设正确时接受原假设,当错误时拒绝原假设都表明决策者做出了正确的抉择没有犯错,特别的,我们将决策者不犯第二类错误的概率称为统计检验力(power of test),记为1-β
(七) 统计显著(Statistical significance)与经济显著(Economic Significance)
在利用假设检验进行金融分析时注意区别两者,许多投资策略在假设检验上能够获得正收益,然而在扣除交易费用、税收并考虑风险后就无法经济显著获得正收益。