电商销售数据分析(电商销售数据统计)

http://www.itjxue.com  2023-01-30 08:13  来源:未知  点击次数: 

电商怎么做数据分析

电商数据分析的常用方法有:逻辑树分析法;PEST分析法;多维度拆解法;对比分析法;假设检验分析法。

1、逻辑树分析:逻辑树分析法的目的是把复杂的问题变简单,即把一个问题当成树干,然后找出所有充当树枝的子问题,并以此类推,逐步找到一个个具体而直接的子问题,从而找到解决复杂问题的方法。

2、PEST分析法:用于做行业分析,是通过政治Politics,经济Economy,社会Society和技术Technology四个因素来分析宏观环境的方法,其应用领域有公司战略规划,市场经营规划,产品发展规划,撰写研究报告等。

3、多维度拆解法:目的是从多个维度思考问题,即从多个角度出发,把一个复杂问题拆解成多个简单的子问题去解决,其把问题整体拆解成多个部分,通过对比可以看出不同整体之间部分的差异。

4、对比分析法:通过对比找差异,从而追踪业务是否存在问题的方法。使用对比分析法,要搞清楚两个问题,一是和谁比,二是如何比。

5、假设检验分析法:归因分析,即分析问题发生的原因,其底层逻辑是逻辑推理,分为3个步骤,分别是:提出假设,收集证据,得出结论。

如何才能学好电商数据分析和应用?

首要要确定自己需要哪些数据

流量数据(通过PV、UV、访问次数、访问时长、跳出率等流量类指标,可以关注到用户对网站的感知情况,从而通过调整提高流量。将流量数据与不同时间、不同渠道、用户分布等进行关联分析,从而更清晰准确的找到问题,进行调整。)

2.销售数据(成交金额GMV=UV *转化率*客单价)

3.用户数据(包括用户行为、用户画像和用户价值分析,例如注册用户数、活跃用户数、用户平均购买次数、用户留存及用户复购等。)

4.达摩盘(DMP)、仪表盘数等数据

电商平台应该分析哪些数据?具体怎么去分析

电商平台应该分析的数据和分析的规则如下:

1、网站运营指标:

网站运营指标主要用来衡量网站的整体运营状况,这里Ec数据分析联盟暂将网站运营指标下面细分为网站流量指标、商品类目指标、以及供应链指标。网站流量指标主要用从网站优化,网站易用性、网站流量质量以及顾客购买行为等方面进行考虑。

商品类目指标主要是用来衡量网站商品正常运营水平,这一类目指标与销售指标以及供应链指标关联慎密。这里的供应链指标主要指电商网站商品库存以及商品发送方面,而关于商品的生产以及原材料库存运输等则不在考虑范畴之内。

2、经营环境指标:

这里将电子商务网站经营环境指标分为外部竞争环境指标和内部购物环境指标。外部竞争环境指标主要包括网站的市场占有率,市场扩大率,网站排名等,这类指标通常是采用第三方调研公司的报告数据,相对于独立B2C网站而言,淘宝此方面的数据要精准的多。

网站内部购物环境指标包括功能性指标和运营指标(这部分内容和之前的流量指标是一致的),常用的功能性指标包括商品类目多样性、支付配送方式多样性、网站正常运营情况、链接速度等。

3、销售业绩指标:

销售业绩指标直接与公司的财务收入挂钩,这一块指标在所有数据分析指标体系中起提纲挈领的作用,其他数据指标的细化落地都可以根据该指标去细分。

网站销售业绩指标重点在网站订单的转化率方面,而订单销售指标重点则在具体的毛利率、订单有效率、重复购买率、退换货率方面,当然还有很多指标,譬如总销售额、品牌类目销售额、总订单、有效订单等等,这里并没有一一列出。

4、营销活动指标:

一场营销活动做的是否成功,通常从活动效果(收益和影响力)、活动成本以及活动粘合度(通常以用户关注度、活动用户数以及客单价等来衡量)等几方面考虑。这里将营销活动指标区分为日常市场运营活动指标、广告投放指标以及对外合作指标。

其中市场运营活动指标和广告投放指标主要考虑新增访客数、订单数量、下单转化率、每次访问成本、每次转换收入以及投资回报率等指标。而对外合作指标则根据具体合作对象而定,譬如某电商网站与返利网合作,首先考虑的也是合作回报率。

5、客户价值指标:

一个客户的价值通常由三部分组成:历史价值(过去的消费)、潜在价值(主要从用户行为方面考虑,RFM模型为主要衡量依据)、附加值(主要从用户忠诚度、口碑推广等方面考虑)。这里客户价值指标分为总体客户指标以及新、老客户价值指标。

这些指标主要从客户的贡献和获取成本两方面来衡量。譬如,这里用访客人数、访客获取成本以及从访问到下单的转化率来衡量总体客户价值指标,而对老顾客价值的衡量除了上述考虑因素外,更多的是以RFM模型为考虑基准。

扩展资料:

电子商务中使用分析数据的优点:

数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。

通常,单独的分析某个数据指标并不能解决问题,而各个指标间又是相互关联的,将所有指标织成一张网,根据具体的需求寻找各自的数据指标节点。当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户。

电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里面,所以对于这些客户可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户的扩展营销的可能性。

参考资料来源:百度百科-电子商务数据分析

电商数据分析需要统计哪些指标

最重要的就是这几个了:

1 、商品数据分析:电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多,比如从时间维度、商品类别、价格维度等;

2、访问流量分析:渠道质量、跳出率、PC/UV、访问时长、转化率等;

3、订单数据分析:成交额、成交率、客单价等;

4、用户行为分析:新老用户购买情况、复购率、活跃率等;

5、营销活动分析:ROI、活动效果、营销成本等;

以上电商相关的可视化图表的制作工具为BDP个人版,可以将各个平台数据统一整合到BDP,然后做好一次分析图表,后期就不需要重复分析啦!

(责任编辑:IT教学网)

更多

推荐java认证文章