利用python进行数据分析(利用Python进行数据分析第二版)

http://www.itjxue.com  2023-04-14 17:51  来源:未知  点击次数: 

如何利用python语言进行数据分析?

随着互联网的不断发展,数据分析已经成为指导我们工作方向的主要依据之一,而岁散今天我们就一起来了解一下,如租返何利用python编程开发来进行数据分析,下面电脑培训就开始今天的主要内容吧。

为什么要学习Python进行数据分析?

Python作为一种用于数据分析的语言,近引起了广泛的兴趣。我以前学过Python的基础知识。下面是一些支持学习Python的原因:

开源-免费安装

很棒弊雀饥的在线社区

简单易学

可以成为数据科学和基于web的分析产品生成的通用语言

不用说,它也有一些缺点:

它是一种解释语言而不是编译语言——因此可能会占用更多的CPU时间。但是,考虑到节省了程序员的时间(由于易于学习),它仍然是一个不错的选择。

Python2.7和3.4

这是Python中受争议的话题之一。您一定会遇到它,特别是如果您是初学者的话。这里没有正确/错误的选择。这完全取决于情况和你的需要。我会试着给你一些建议来帮助你做出明智的选择。

为什么Python2.7?

很棒的社区支持!这是你早年需要的东西。Python2于2000年末发布,已经使用了超过15年。

过多的三方库!虽然许多库都提供了3.x支持,但仍然有很多模块只能在2.x版本上工作。如果您计划将Python用于特定的应用程序,比如高度依赖外部模块的web开发,那么使用2.7可能会更好。

怎样用 Python 进行数据分析?

做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法

那Python有哪些库类销桐是模斗核能做数据分析的,很多,pandas,sklearn等等

所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工旦掘具,

之后再学怎么分析。

利用Python进行数据分析-读书笔记(3)

pandas专门为处理表格和混杂数据设计

import pandas as pd

from pandas import Series,DataFrame

Series 类似于一维数组+索引

data = pd.Series([1,2,3,4,5]) 生成Series数据

data.values data.index

pd.Series([1,2],index = ['a','b']) 设置索引

data['a'] 通过索引选取Series中单个或一组值

data[data%2==0] 进行类似numpy数组的运算index仍会保留

'a' in data

pd.Series(python字典) 可以通过python字典创建Series

可以通过设置index改变Series元素顺序

缺失值用NaN表示

pd.isnull(data) 检测缺失数据

pd.notnull

data1 + data2 可以根据索引自动对齐数据进行运算,类似join操作

data.name data.index.name 可赋值

index可以通过赋值方式修改

pd.DataFrame(XXX)传入元素为等长列表或np数组组成的字典可以生成DataFrame数据,字典key值为列名

frame.head() 前五行

pd.DataFrame(XXX, columns = [xxx], index = [xxxxx]) 可能产生NaN

frame['a'] 取列名为a的一列数据 等价于 frame.a(此时a需要是合理的变量名) 可以以列表形式取多列数据 返回的Series序列索引与原DataFrame相同

frame.loc[0] 行选取

可以用一个Series/值对某列赋值,需要长度相等

对不档伍存在的列赋值可创建新列

del frame[列名] 删除列

通过索庆蠢碰引方式返回数据视图,修改此返回数据也会影响源数据,Series.copy()可以创建副本

嵌套字典传给DataFrame,外层字典的键作为列名,内层键作为行索引

frame.T 转置

frame.reindex(新索引列表) 根据新索引重排,若索引值当前不存在则NaN

列可以用columns关键字重新索引

obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

obj3.reindex(range(6), method='ffill') ffill实誉谈现前向值填充

reindex可以修改(行)索引和列。只传递一个序列时,会重新索引结果的行,列可以用columns关键字重新索引

Series索引

series(索引列表/数值范围切片) 选取对应元素

《利用Python进行数据分析》——案例1从Bitly获取数据

这个案例主要目的是转换json类型的数据,利用python和pandas方法进行计数。

step1:获取数据

将json格式数据转化成python对象

step2纯python时区计数誉团

1.获取时区+计数

2.对以上字典形式进行计数

3.更更简单的方法,直接用python标准库的collections.Counters类

从仅获取姿枣时区庆册橘后开始

step3 使用pandas计数

step4 可视化 seaborn

5.补充一些语句

如何利用python进行数据分析

利用python进行数据分析 ?

链接: ?

?pwd=3nfn 提取码: 3nfn

本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚启戚接触脊困Python的分析人员以及刚刚接触科学樱旁念计算的Python程序员。

如何用python进行数据分析

1、Python数据分析流程及学习路径

数据分析的流程概括起来主要是镇圆:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。

根据每个部分需要用到的工具,Python数据分析的学习路径如下:

相关推荐:《Python入门教程

2、利用Python读写数据

Python读写数据,主要包括以下内容:

我们以一小段代码来看:

可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。

3、利用Python处理和计算数据

在第一步和第二步,我们主御毁塌要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。

Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性余晌统计,统计测试,绘图函数和结果统计列表。

Scikit-leran则是著名的机器学习库,可以迅速使用各类机器学习算法。

5、利用Python数据可视化

数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。

(责任编辑:IT教学网)

更多

推荐Flash教程文章