矩阵运算(矩阵计算器)
矩阵的基本运算规则
本文图片整理于:;wfr=spiderfor=pcisFailFlag=1。
矩阵运算规则:
矩阵之间相乘,必须满足B矩阵列数等于A矩阵行数才能运算,矩阵与矩阵之间的计算可以拆分为矩阵与多个向量的计算再将结果组合,返回的结果为一个列数等于B矩阵、行数等于A矩阵的矩阵。
矩阵加减必须满足矩阵之间纬度相同,返回的结果也会是一个相同纬度的矩阵。
不满足交换律,A×B? ≠ B×A
满足结合律,A×(B×C) = (A×B)×C
满足分配率,A×(B+C) =A×B + A×C
任何矩阵乘以单位矩阵都等于它本身,且此处复合交换律,及任意矩阵乘以单位矩阵=单位矩阵乘以此矩阵, 满足:A×I = I×A =A。
单位矩阵特征:主对角线元素都等于1,其余元素都等于0的方阵是单位矩阵,方阵指行列数相等的矩阵。
以下矩阵示例均为单位矩阵:
矩阵的基本运算公式大全
矩阵的基本运算公式大全如下:
1.行矩阵、列矩阵:mxn阶矩阵中,m=1,称为行矩阵,也称为n维行向量;n=1,称为列矩阵,也称为m维列向量。
2.零矩阵:所有元素都为0的mxn阶矩阵
3.n阶方阵:mxn阶矩阵A中,m=n;n阶方阵A,可定义行列式记为A;n阶方阵存在主对角线及主对角线元素。
4.单位矩阵:主对角线上的元素都为1,其余元素均为0的n阶方阵称为n阶单位矩阵,记为E。
5.对角形矩阵:非主对角线上的`元素全为0的n阶方阵称为对角形矩阵。
6.数量矩阵:n阶对角形矩阵主对角线上元素相等时,称为数量矩阵。
7.上(下) 三角形矩阵:n阶方阵中,主对角线下方元素全为零,称为上三角矩阵;主对角线上方元素全为零,称为下三角矩阵。
8.同型矩阵:A=aij(mxn),B=bij(sxt),m=s、n=t,A与B为同型矩阵,若对应元素相等,则A与B相等。
9.逆矩阵:设A是n阶方阵,若存在一个n阶方阵B,使得AB=BA=E,则B称为A的逆矩阵,A称为可逆矩阵或非奇异矩阵。(可逆矩阵一定是方阵,并且它的逆矩阵为同阶方阵;A与B地位是等同的,所以B也是可逆矩阵,并且A是B的逆矩阵。)记为A-1,AA-1=A-1A=E.
10.伴随矩阵:设矩阵A,Aii为行列式|Al中元素aij的代数余子式,称A*为矩阵A的伴随矩阵。
AA*=A*A=|AE

矩阵怎么运算
方法:左边矩阵第一行的元素分别与右边矩阵第一列的元素相乘,求和得到相乘矩阵的第一行的第一个元素。左边矩阵第一行的元素分别与右边矩阵第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素,以此类推。
值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
矩阵乘法注意事项
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
矩阵计算公式
矩阵计算公式如下:
1、矩阵的计算,首先确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。再计算结果矩阵的行列数。画一个空白的矩阵,来代表矩阵乘法的结果。矩阵A和矩阵B相乘得到的矩阵,与矩阵A有相同的行数,与矩阵B有相同的列数。
2、矩阵指在数学中,按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵,由19世纪英国数学家凯利首先提出。它是高等代数学中的常见工具,其运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合,可以在理论和实际应用上简化矩阵的运算。
3、矩阵的乘法规律:不满足交换律A×B≠B×A。满足结合律,A×B×C=A×B×C。满足分配率,A×B+C=A×B+A×C。单位矩阵:任何矩阵乘以单位矩阵都等于它本身,且此处复合交换律,及任意矩阵乘以单位矩阵=单位矩阵乘以此矩阵,满足:A×I=I×A=A。
矩阵有哪些运算方法?
1、矩阵等价的定义及符号:
存在满秩矩阵PQ,使得:B=PAQ成立,则称矩阵A、B等价;矩阵的等价符号为:
2、矩阵相似的定义及符号:
存在可逆矩阵P,使得:B=P-1AP成立,则称矩阵A、B相似;矩阵的相似符号为:
3、矩阵合同的定义及符号:
存在可逆矩阵P,使得:B=P’AP成立,则称矩阵A、B合同;矩阵的合同符号为:
扩展资料:
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
矩阵的乘法:
两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵??,它的一个元素:
并将此乘积记为:C=AB
矩阵的乘法满足以下运算律:
结合律:(AB)C=A(BC)
左分配律:(A+B)C=AC+BC
右分配律:C(A+B)=CA+CB
矩阵乘法不满足交换律。
参考资料来源:矩阵-百度百科