list生成器,listing生成器

http://www.itjxue.com  2023-01-07 19:40  来源:未知  点击次数: 

python生成器到底有什么优点?

在Python这门语言中,生成器毫无疑问是最有用的特性之一。与此同时,也是使用的最不广泛的Python特性之一。究其原因,主要是因为,在其他主流语言里面没有生成器的概念。正是由于生成器是一个“新”的东西,所以,它一方面没有引起广大工程师的重视,另一方面,也增加了工程师的学习成本,最终导致大家错过了Python中如此有用的一个特性。

1. 迭代器协议

由于生成器自动实现了迭代器协议,而迭代器协议对很多人来说,也是一个较为抽象的概念。所以,为了更好的理解生成器,我们需要简单的回顾一下迭代器协议的概念。

迭代器协议是指:对象需要提供next方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代

可迭代对象就是:实现了迭代器协议的对象

协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象。

举个例子:在所有语言中,我们都可以使用for循环来遍历数组,Python的list底层实现是一个数组,所以,我们可以使用for循环来遍历list。

2. 生成器

Python使用生成器对延迟操作提供了支持。所谓延迟操作,是指在需要的时候才产生结果,而不是立即产生结果。这也是生成器的主要好处。

Python有两种不同的方式提供生成器:

生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

4. 使用生成器的注意事项

5. 总结

本文深入浅出地介绍了Python中,一个容易被大家忽略的重要特性,即Python的生成器。为了讲解生成器,本文先介绍了迭代器协议,然后介绍了生成器函数和生成器表达式,并通过示例演示了生成器的优点和注意事项。在实际工作中,充分利用Python生成器,不但能够减少内存使用,还能够提高代码可读性。掌握生成器也是Python高手的标配。希望本文能够帮助大家理解Python的生成器。

python 迭代器和生成器的区别

Num01–迭代器

定义:

对于list、string、tuple、dict等这些容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数。iter()是python内置函数。

iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素。next()也是python内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。

迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的_next_方法(Python3中是对象的_next_方法,Python2中是对象的next()方法)。所以,我们要想构造一个迭代器,就要实现它的_next_方法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现_iter_方法,而_iter_方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的_iter_方法返回自身self即可。

一些术语的解释:

1,迭代器协议:对象需要提供next()方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代。

2,可迭代对象:实现了迭代器协议对象。list、tuple、dict都是Iterable(可迭代对象),但不是Iterator(迭代器对象)。但可以使用内建函数iter(),把这些都变成Iterable(可迭代器对象)。

3,for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束

Python自带容器对象案例:

# 随便定义一个listlistArray=[1,2,3]# 使用iter()函数iterName=iter(listArray)

print(iterName)# 结果如下:是一个列表list的迭代器# list_iterator object at 0x0000017B0D984278print(next(iterName))

print(next(iterName))

print(next(iterName))

print(next(iterName))#没有迭代到下一个元素,直接抛出异常# 1# 2# 3# Traceback (most recent call last):# File "Test07.py", line 32, in module# StopIteration123456789101112131415161718

Python中一个实现了_iter_方法和_next_方法的类对象,就是迭代器,如下案例是计算菲波那切数列的案例

class Fib(object):

def __init__(self, max):

super(Fib, self).__init__()

self.max = max def __iter__(self):

self.a = 0

self.b = 1

return self def __next__(self):

fib = self.a if fib self.max: raise StopIteration

self.a, self.b = self.b, self.a + self.b return fib# 定义一个main函数,循环遍历每一个菲波那切数def main():

# 20以内的数

fib = Fib(20) for i in fib:

print(i)# 测试if __name__ == '__main__':

main()12345678910111213141516171819202122232425262728

解释说明:

在本类的实现中,定义了一个_iter_(self)方法,这个方法是在for循环遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter(),由iter()通过调用_iter_(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的_next_(self)方法对迭代器对象进行遍历。所以要实现_iter_(self)和_next_(self)这两个方法。

而且因为实现了_next_(self)方法,所以在实现_iter_(self)的时候,直接返回self就可以。

总结一句话就是:

在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的_iter_(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的_next_(self)。

注意点:_iter_(self)只会被调用一次,而_next_(self)会被调用 n 次,直到出现StopIteration异常。

Num02–生成器

作用:

延迟操作。也就是在需要的时候才产生结果,不是立即产生结果。12

注意事项:

生成器是只能遍历一次的。

生成器是一类特殊的迭代器。123

分类:

第一类:生成器函数:还是使用 def 定义函数,但是,使用yield而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行。

如下案例加以说明:

# 菲波那切数列def Fib(max):

n, a, b = 0, 0, 1

while n max: yield b

a, b = b, a + b

n = n + 1

return '亲!没有数据了...'# 调用方法,生成出10个数来f=Fib(10)# 使用一个循环捕获最后return 返回的值,保存在异常StopIteration的value中while True: try:

x=next(f)

print("f:",x) except StopIteration as e:

print("生成器最后的返回值是:",e.value) break123456789101112131415161718

第二类:生成器表达式:类似于列表

,只不过是把一对大括号[]变换为一对小括号()。但是,生成器表达式是按需产生一个生成器结果对象,要想拿到每一个元素,就需要循环遍历。

如下案例加以说明:

# 一个列表xiaoke=[2,3,4,5]# 生成器generator,类似于list,但是是把[]改为()gen=(a for a in xiaoke)for i in gen:

print(i)#结果是:2345# 为什么要使用生成器?因为效率。# 使用生成器表达式取代列表推导式可以同时节省 cpu 和 内存(RAM)。# 如果你构造一个列表(list)的目的仅仅是传递给别的函数,# 比如 传递给tuple()或者set(), 那就用生成器表达式替代吧!# 本案例是直接把列表转化为元组kk=tuple(a for a in xiaoke)

print(kk)#结果是:(2, 3, 4, 5)# python内置的一些函数,可以识别这是生成器表达式,外面有一对小括号,就是生成器result1=sum(a for a in range(3))

print(result1)# 列表推导式result2=sum([a for a in range(3)])

print(result2)

关于python列表生成的一个问题

python的列表生成式

一、r的防止字符转义

print r"a\nb"

运行结果:

a\nb

二、获取变量类型

a = r"a\nb"

print type(a)

运行结果:

type 'str'

三、判断类型

a = r"a\nb"

print isinstance(a,str)

运行结果:

True

四、对list、tuple、dict、set进行迭代

4.1常用的方式

list = ['a','b','c']

for i in list:

print i

dict = {"k1":"v1","k2":"v2"}

for k,v in dict.items():

print k,v

但是这种迭代方式会把list装到内存中进行迭代

4.2使用迭代器来迭代

list = ['a','b','c']

for i in iter(list):

print i

dict = {"k1":"v1","k2":"v2"}

for k,v in dict.iteritems():

print k,v

dict = {"k1":"v1","k2":"v2"}

for k in dict.iterkeys():

print k

这种方式的迭代比较省内存

4.3迭代值的同时迭代下标

list = ['a','b','c']

for index,value in enumerate(list):

print index,value

五、列表生成式

根据集合生成列表

list1 = ['a','b','c']

list2 = [1,2]

print [x*y for x in list1 for y in list2 if y1 and y3]

运行结果是:

['aa', 'bb', 'cc']

六、列表生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

只要把一个列表生成式的[]改成(),就创建了一个generator:

g = (x * x for x in range(10))

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

但是我们一般通过for循环来迭代它,并且不需要关心StopIteration的错误。

for n in g:

print(n)

Python中列表生成式和生成器的区别

列表生成式语法:

[x*x for x in range(0,10)] //列表生成式,这里是中括号

//结果 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(x*x for x in range(0,10)) //生成器, 这里是小括号

//结果 generator object genexpr at 0x7f0b072e6140

二者的区别很明显:

一个直接返回了表达式的结果列表, 而另一个是一个对象,该对象包含了对表达式结果的计算引用, 通过循环可以直接输出

g = (x*x for x in range(0,10))

for n in g:

print n

结果

1

4

9

16

25

36

49

64

81

当表达式的结果数量较少的时候, 使用列表生成式还好, 一旦数量级过大, 那么列表生成式就会占用很大的内存,

而生成器并不是立即把结果写入内存, 而是保存的一种计算方式, 通过不断的获取, 可以获取到相应的位置的值,所以占用的内存仅仅是对计算对象的保存

(责任编辑:IT教学网)

更多

相关网页背景文章

推荐网页背景文章