Python数据分析从入门到精通(python数据分析从入门到精通清华大

http://www.itjxue.com  2023-02-11 03:49  来源:未知  点击次数: 

python如何从入门到精通

其实python非常适合初学者入门。相比较其他不少主流编程语言,有更好的可读性,因此上手相对容易。自带的各种模块加上丰富的第三方模块,免去了很多“重复造轮子”的工作,可以更快地写出东西。配置开发环境也不是很复杂,mac和linux都内置了python。另外据我所知,不少学校也开始使用python来教授程序设计课程。

从在校时候用python接活赚零花钱,到在创业公司用python开发商业网站和游戏后台。所有遇到的问题,几乎都可以从互联网上的公开资源找到答案。

关于自学python,个人最大的3点经验:

1、找一本浅显易懂,例程比较好的教程,从头到尾看下去。不要看很多本,专注于一本。把里面的例程都手打一遍,搞懂为什么。我当时看的是《简明python教程》,不过这本书不是非常适合零基础初学者。

2、去找一个实际项目练手。我当时是因为要做一个网站,不得已要学python。这种条件下的效果比你平时学一门新语言要好很多。所以最好是要有真实的项目做。可以找几个同学一起做个网站之类。注意,真实项目不一定非要是商业项目,你写一个只是自己会用的博客网站也是真实项目,关键是要核心功能完整。

3、最好能找到一个已经会python的人。问他一点学习规划的建议,然后在遇到卡壳的地方找他指点。这样会事半功倍。但是,要学会搜索,学会如何更好地提问。没人愿意帮你写作业或是回答“一搜便知”的问题。

所以除了前面说的3点经验,给初学编程者的额外建议:

首先要有信心。虽然可能你看了几个小时也没在屏幕上打出一个三角形,或者压根儿就没能把程序运行起来。但相信我,几乎所有程序员一开始都是这么折腾过来的。

选择合适的教程。有些书很经典,但未必适合你,可能你写了上万行代码之后再看它会比较好。

写代码,然后写更多的代码。光看教程,编不出程序。从书上的例程开始写,再写小程序片段,然后写完整的项目。

除了学习编程语言,也兼顾补一点计算机基础,和英语。

不但要学写代码,还要学会看代码,更要会调试代码。读懂你自己程序的报错信息。再去找些github上的程序,读懂别人的代码。

学会查官方文档,用好搜索引擎和开发者社区。

请问Python从入门到精通要学多久?

如果参加Python培训的话,从入门到精通学习五个月的时间就足够了,如果具有一定编程基础的话,培训学习起来会更快的;没有基础学习起来相对于更慢一些,也不适合自学Python。

python数据分析该怎么入门呢?

1.为什么选择Python进行数据分析?

Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特性称为“伪代码”,它可以使你只关心完成什么样的工作任务,而不是纠结于Python的语法。

另外,Python是开源的,它拥有非常多优秀的库,可以用于数据分析及其他领域。更重要的是,Python与最受欢迎的开源大数据平台Hadoop具有很好的兼容性。因此,学习Python对于有志于向大数据分析岗位发展的数据分析师来说,是一件非常节省学习成本的事。

Python的众多优点让它成为最受欢迎的程序设计语言之一,国内外许多公司也已经在使用Python,例YouTube,Google,阿里云等等。

3.数据分析流程

Python是数据分析利器,掌握了Python的编程基础后,就可以逐渐进入数据分析的奇妙世界。CDA数据分析师认为一个完整的数据分析项目大致可分为以下五个流程:

1)数据获取

一般有数据分析师岗位需求的公司都会有自己的数据库,数据分析师可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sql server、mysql、orcale等主流数据库的接口包,比如pymssql、pymysql、cx_Oracle等。

而获取外部数据主要有两种获取方式,一种是获取国内一些网站上公开的数据资料,例如国家统计局;一种是通过编写爬虫代码自动爬取数据。如果希望使用Python爬虫来获取数据,我们可以使用以下Python工具:

Requests-主要用于爬取数据时发出请求操作。

BeautifulSoup-用于爬取数据时读取XML和HTML类型的数据,解析为对象进而处理。

Scapy-一个处理交互式数据的包,可以解码大部分网络协议的数据包

2)数据存储

对于数据量不大的项目,可以使用excel来进行存储和处理,但对于数据量过万的项目,使用数据库来存储与管理会更高效便捷。

3)数据预处理

数据预处理也称数据清洗。大多数情况下,我们拿到手的数据是格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。CDA数据分析师认为数据分析有80%的工作都在处理数据。如果选择Python作为数据清洗的工具的话,我们可以使用Numpy和Pandas这两个工具库:

Numpy - 用于Python中的科学计算。它非常适用于与线性代数,傅里叶变换和随机数相关的运算。它可以很好地处理多维数据,并兼容各种数据库。

Pandas –Pandas是基于Numpy扩展而来的,可以提供一系列函数来处理数据结构和运算,如时间序列等。

4)建模与分析

这一阶段首先要清楚数据的结构,结合项目需求来选取模型。

常见的数据挖掘模型有:

在这一阶段,Python也具有很好的工具库支持我们的建模工作:

scikit-learn-适用Python实现的机器学习算法库。scikit-learn可以实现数据预处理、分类、回归、降维、模型选择等常用的机器学习算法。

Tensorflow-适用于深度学习且数据处理需求不高的项目。这类项目往往数据量较大,且最终需要的精度更高。

5)可视化分析

数据分析最后一步是撰写数据分析报告,这也是数据可视化的一个过程。在数据可视化方面,Python目前主流的可视化工具有:

Matplotlib-主要用于二维绘图,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。

Seaborn-是基于matplotlib产生的一个模块,专攻于统计可视化,可以和Pandas进行无缝链接。

从上图我们也可以得知,在整个数据分析流程,无论是数据提取、数据预处理、数据建模和分析,还是数据可视化,Python目前已经可以很好地支持我们的数据分析工作。

如何快速学习Python?

Python是一门语法简洁、功能强大、上手简单的计算机编程语言,根据TIOBE最新排名,Python已超越C#,与Java,C,C++成为全球4大流行语言之一。

Python编程语言其应用广泛,在人工智能、云计算开发、大数据开发、数据分析、科学运算、网站开发、爬虫、自动化运维、自动化测试以及游戏领域均有应用。

在各大企业,如国内的阿里、腾讯、网易、新浪、豆瓣,国外的谷歌、NASA、YouTube、Facebook,Python的企业对Python开发人才均有巨大的需求,随着人工智能、大数据的发展和广泛的应用,Python人才的需求量也势必增加,而且在未来的发展前景也是不可限量的!

相比于Java、php等语言,目前,Python编程人才缺口较大,市场供不应求,就业薪资也普遍较高,因此,现在学习Python是绝佳机会。那么,如何快速学习Python?

1.要有决心

做任何事情,首先要有足够的决心和坚持,才能做好事情、学好Python也是如此。

2.勤于动手

对于编程语言的学习,不能眼高手低,学的过程中,想到就要写出来,一方面能够培养出写代码的感觉,另一方面可以加深知识的掌控。

3.一套完整的学习体系

Python编程语言的全面学习,需要拥有一整套系统的学习资料和学习计划,全面掌握Python基础知识,对以后解决Python编程过程中的问题十分有益!

4.项目实战训练

Python编程基础知识的学习最终目的是应用于项目中,因此,项目实战训练必不可少,多做几个项目,尽量是功能完整的项目,形成项目思路,对以后进行项目实战是很有好处的!

Python数据分析怎么入门?

一、数据获取Python具有灵活易用,方便读写的特点,其可以非常方便地调用数据库和本地的数据,同时,Python也是当下网络爬虫的首选工具。Scrapy爬虫,Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

二、数据整理NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。PandasPandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

三、建模分析Scikit-learn从事数据分析建模必学的包,提供及汇总了当前数据分析领域常见的算法及解决问题,如分类问题、回归问题、聚类问题、降维、模型选择、特征工程。四、数据可视化如果在Python中看可视化,你可能会想到Matplotlib。除此之外,Seaborn是一个类似的包,这是用于统计可视化的包。

关于Python数据分析怎么入门,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

(责任编辑:IT教学网)

更多

推荐excel文章