二阶非线性齐次常微分方程解法,二阶非线性非齐次微分方程求解
二阶常系数非齐次线性微分方程特解是什么?
二阶常系数非齐次线性微分方程特解如下:
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:
1、如果f(x)=P(x),Pn(x)为n阶多项式。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
特解y*设法
1、如果f(x)=P(x),Pn(x)为n阶多项式。
若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。
比如如果Pn(x)=a(a为常数),则设Qm(x)=A(A为另一个未知常数);如果Pn(x)=x,则设Qm(x)=ax+b;如果Pn(x)=x^2,则设Qm(x)=ax^2+bx+c。
若0是特征方程的单根,在令特解y*=x^k*Qm(x)*e^λx中,k=1,λ=0,即y*=x*Qm(x)。
若0是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,λ=0,即y*=x^2*Qm(x)。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。
若α是特征方程的单根,在令特解y*=x^k*Qm(x)*e^αx中,k=1,即y*=x*Qm(x)*e^αx。
若α是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,即y*=x^2*Qm(x)*e^αx。
3、如果f(x)=e^αx,Pl(x)为l阶多项式,Pn(x)为n阶多项式。
若α±iβ不是特征值,在令特解y*=x^k*e^αx中,k=0,m=max{l,n},Rm1(x)与Rm2(x)设法要根据Pl(x)或Pn(x)的情况而定(同Qm(x)设法要根据Pn(x)的情况而定的原理一样)。
即y*=e^αx
若α±iβ不是特征值,在令特解y*=x^k*e^αx中,k=1,即y*=x*e^αx。
二阶非齐次微分方程的解法
二阶线性齐次微分方程为齐,二阶线性非齐次微分方程为非。证明方程成立的充要条件是,a+b+c=1,将y代入非齐次方程,证明方程成立的充要条件是a+b+c=0。a、b、c中有2个任意常数,而方程是二阶微分方程通解含有2个任意常数,所以y是方程的通解。
二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。
若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

二阶非齐次线性微分方程的特解怎么解?
较常用的几个:
1、Ay''+By'+Cy=e^mx?
特解y=C(x)e^mx
2、Ay''+By'+Cy=a sinx + bcosx? ??
特解y=msinx+nsinx
3、Ay''+By'+Cy= mx+n? ? ? ? ? ? ? ? ?
特解y=ax
如果右边为多项式,则特解就设为次数一样的多项式;
如果右边为多项项乘以e^(ax)的形式,那就要看这个a是不是特征根:
如果a不是特征根,那就将特解设为同次多项式乘以e^(ax)。
如果a是一阶特征根,那这个特解就要在上面的基础上乘以一个x。
如果a是n重特征根,那这个特解就要在上面的基础上乘以x^n。
扩展资料:
齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,它的通解是由其对应的齐次方程的通解加上其一个特解组成。
参考资料来源:百度百科-非齐次线性微分方程
高数二阶非齐次微分方程怎么解
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根
令ar2+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)2=-β2)
第二步:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x2+2x,则设Q(x)为ax2+bx+c,abc都是待定系数)
1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)
2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根 k=2 y*=x2*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结果就是y=通解+特解。
通解的系数C1,C2是任意常数。
拓展资料:
微分方程
微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
高数常用微分表
唯一性
存在定一微 分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。