python爬取网页图片总体设计(python爬取动态网页图片)

http://www.itjxue.com  2023-04-12 05:57  来源:未知  点击次数: 

Pthon编程海龟编辑器爬虫图片htm1怎么生产

使用方法

1.拖动块,然后单击右上角的“运行”以查看运行结果。?2.单击页面顶部的“代码/构建模块模式”以一键式在代码和构建模块之间切换。 3.从Turtle Library Block Box中拖动图块,单击“运行”,然后一键绘制。

拓展资料

软件功能

1. Turtle Editor提供了一种简单的Python编辑方法,可以通过拖动来控制。

2.您可以编辑事件并在图形界面中配置逻辑。

3.可以显示代码结果,并可以查看多种编程方法。

4.功能界面很简单:Turtle Editor不仅可以在线编写和执行Python代码,还可以增加构建模块模式。

5.从图形编程过渡到Python编程,并学习带有构建块的Python。

6.通过[Building Block Mode]完成组装后,只需单击模式切换按钮,即可将Building Block转换为真实的Python语言。

7.在实际应用中,除了运行自己编写的程序外,我们还可以使用Python来调用和使用其他人编写的程序。这样,我们可以节省大量重复和不必要的工作,并使我们可以更有效地编辑程序。

8. Turtle Editor支持一键安装常用的第三方库。单击编辑器界面顶部的“库管理”以打开用于下载和安装第三方库的界面。

9. Turtle Editor不仅具有开朗可爱的外观设计,而且还特别设计了暖黄色基本色和超大而清晰的文字字体来保护眼睛。

10.有许多内在的细节可以帮助初学者快速纠正错误并学习编码。

我想用python抓取网页里的图片,地址,商铺名,电话号码,怎么写代码

class DB(object):

def __init__(self, host, port, user,

passwd, db, use_unicode=True, charset='utf8'):

self.host = host

self.port = port

self.user = user

self.passwd = passwd

self.db = db

self.use_unicode = use_unicode

self.charset = charset

@property

def conn(self):

if not hasattr(self, '__conn'):

self.__conn = MySQLdb.connect(

host=self.host,

port=self.port,

user=self.user,

passwd=self.passwd,

db=self.db,

use_unicode=self.use_unicode,

charset=self.charset

)

return self.__conn

def reboot_conn(self):

if hasattr(self, '__conn'):

try:

self.__conn.close()

del self.__conn

except:

pass

@catch_2006

def query(self, sql, args=None):

print sql

cursor = self.conn.cursor()

cursor.execute(sql, args)

cursor.execute('commit')

cursor.close()

@catch_2006

def select(self, sql, args=None, is_dict=False, is_one=False):

# print sql, args

if is_dict:

cursor = self.conn.cursor(cursorclass=DictCursor)

else:

cursor = self.conn.cursor()

cursor.execute(sql, args)

if is_one:

resultset = cursor.fetchone()[0]

else:

resultset = cursor.fetchall()

cursor.close()

return resultset

Python如何爬取百度图片?

几乎所有的网站都会有反爬机制,这就需要在爬取网页时携带一些特殊参数,比如:user-agent、Cookie等等,可以在写代码的时候用工具将所有参数都带上。

linux下python怎么写爬虫获取图片

跟linux有什么关系,python是跨平台的,爬取图片的代码如下:

import urllib.requestimport osimport randomdef url_open(url):

req=urllib.request.Request(url) ? ?#为请求设置user-agent,使得程序看起来更像一个人类

req.add_header('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0') ? ?#代理IP,使用户能以不同IP访问,从而防止被服务器发现

'''iplist=['1.193.162.123:8000','1.193.162.91:8000','1.193.163.32:8000']

proxy_support=urllib.request.ProxyHandler({'http':random.choice(iplist)})

opener=urllib.request.build_opener(proxy_support)

opener.addheaders=[('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.154 Safari/537.36 LBBROWSER')]

urllib.request.install_opener(opener)'''

response=urllib.request.urlopen(req)

html=response.read() ? ?return htmldef get_page(url):

html=url_open(url).decode('utf-8')

a=html.find('current-comment-page')+23

b=html.find(']',a) ? ?#print(html[a:b])

return html[a:b]def find_imgs(url):

html=url_open(url).decode('utf-8')

img_addrs=[]

a=html.find('img src=') ? ?while a!=-1:

b=html.find('.jpg',a,a+140) ? ? ? ?if b!=-1: ? ? ? ? ? ?if html[a+9]!='h':

img_addrs.append('http:'+html[a+9:b+4]) ? ? ? ? ? ?else:

img_addrs.append(html[a+9:b+4]) ? ? ? ?else:

b=a+9

a=html.find('img src=',b) ? ?for each in img_addrs:

print(each+'我的打印') ? ?return img_addrsdef save_imgs(folder,img_addrs):

for each in img_addrs: ? ? ? ?#print('one was saved')

filename=each.split('/')[-1] ? ? ? ?with open(filename,'wb') as f:

img=url_open(each)

f.write(img)def download_mm(folder='ooxx',pages=10):

os.mkdir(folder)

os.chdir(folder)

url=""

page_num=int(get_page(url)) ? ?for i in range(pages):

page_num=page_num-1

page_url=url+'page-'+str(page_num)+'#comments'

img_addrs=find_imgs(page_url)

save_imgs(folder,img_addrs)if __name__=='__main__':

download_mm()1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374

完成

运行结果

如何用python爬取网站数据?

这里简单介绍一下吧,以抓取网站静态、动态2种数据为例,实验环境win10+python3.6+pycharm5.0,主要内容如下:

抓取网站静态数据(数据在网页源码中):以糗事百科网站数据为例

1.这里假设我们抓取的数据如下,主要包括用户昵称、内容、好笑数和评论数这4个字段,如下:

对应的网页源码如下,包含我们所需要的数据:

2.对应网页结构,主要代码如下,很简单,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面:

程序运行截图如下,已经成功爬取到数据:

抓取网站动态数据(数据不在网页源码中,json等文件中):以人人贷网站数据为例

1.这里假设我们爬取的是债券数据,主要包括年利率、借款标题、期限、金额和进度这5个字段信息,截图如下:

打开网页源码中,可以发现数据不在网页源码中,按F12抓包分析时,才发现在一个json文件中,如下:

2.获取到json文件的url后,我们就可以爬取对应数据了,这里使用的包与上面类似,因为是json文件,所以还用了json这个包(解析json),主要内容如下:

程序运行截图如下,已经成功抓取到数据:

至此,这里就介绍完了这2种数据的抓取,包括静态数据和动态数据。总的来说,这2个示例不难,都是入门级别的爬虫,网页结构也比较简单,最重要的还是要会进行抓包分析,对页面进行分析提取,后期熟悉后,可以借助scrapy这个框架进行数据的爬取,可以更方便一些,效率更高,当然,如果爬取的页面比较复杂,像验证码、加密等,这时候就需要认真分析了,网上也有一些教程可供参考,感兴趣的可以搜一下,希望以上分享的内容能对你有所帮助吧。

如何用Python做爬虫

1)首先你要明白爬虫怎样工作。

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?

很简单

import Queue

initial_page = "初始化页"

url_queue = Queue.Queue()

seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂

if url_queue.size()0:

current_url = url_queue.get() #拿出队例中第一个的url

store(current_url) #把这个url代表的网页存储好

for next_url in extract_urls(current_url): #提取把这个url里链向的url

if next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率

如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取

爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:

在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = ""

while(True):

if request == 'GET':

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == 'POST':

bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理

虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...

及时更新(预测这个网页多久会更新一次)

如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,

“路漫漫其修远兮,吾将上下而求索”。

所以,不要问怎么入门,直接上路就好了:)

(责任编辑:IT教学网)

更多

推荐编程综合文章