Python编程与数据分析基础(python高级编程)

http://www.itjxue.com  2023-03-22 03:51  来源:未知  点击次数: 

python 学习,需要有哪些基础呢?

1、有较强的逻辑思维能力

几乎所有编程语言的学习都离不开较强的逻辑思维能力,因为编程语言是人与计算机的对话,任何歧义和差错都会影响最终的运行效率。

2、有较强的数理专业背景

学习Python最理想的专业有数学、统计学、物理学、计算机科学等专业,因为Python语言所操作的对象很可能是大数据收集与分析,以及AI开发领域,有以上的学科背景会对今后的发展有很好的优势。

3、有丰富的运维经验

可能很多学计算机的同学在毕业之后从事了服务器、后台管理的运维工作,这既有优势、也有劣势。所谓优势就是有现成的成品摆在你面前,你在做运维的过程中会对产品开发理解更加充分,然而劣势就在于对自身的技术提高帮助可能比较有限。这时学Python,更在于从运维转开发,这也是对自己职业生涯的一种新规划。

4、从事Web全栈开发工作

以前开发web,Java是主角,但如今越来越多的web开发开始青睐于Python,究其原因其实也是因为网络数据量的日益庞大以及人工智能的普及,所以精通Python语言对于从事web全栈开发将有积极的影响。

如何学习python数据分析

1、首先是要了解一些Python的编程基础。

2、其次知道Python的数据结构,什么是向量、列表、数组、字典等等。

3、最后了解Python的各种函数及模块。

Python该怎么入门?

对于python的入门

首先会学习python基础语法,面向对象编程与程序设计模式的理解、python数据分析基础、python网络编程、python并发与高效编程等等。

通过前期python学习来了解和掌握常量变量的使用,运算符的使用、流程控制的使用等,最后掌握python编程语言的基础内容。

并会对常见数据结构和相应算法进行学习,注重表格的处理,树结构的处理知识。

第二阶段主要学习内容是web页面开发、web页面特效开发、数据持久化开发、linux运维开发、linux测试开发、服务器集群架构等等。

对js的掌握并在网络前端中使用,而且需要详细将js学习并掌握,为将来从事全栈工作打下基础,也会学习linux操作系统的基础知识和掌握linux操作系统常用命令,并会学习linux自动化运维技巧等。

第三阶段主要学习网络爬虫,数据分析加人工智能:

这一个阶段需要学习的内容也是比较多的,例如:爬虫与数据、多线程爬虫、go语言、NoSQL数据库、Scrapy-Redis框架。

需要掌握爬虫的工作原理和设计思想,掌握反爬虫机制,并且通过学习NoSQL数据库和Scrapy-Redis框架,并且可以使用分布式爬虫框架实现大量数据的获取。

数据分析和人工智能阶段需要学习的数据分析、人工智能深度学习、量化交易模型、数据分析-特征工程和结果可视化和人工智能机器学习等等。

需要理解随机变量的数字特征的概念和性质,并会利用性质计算随机变量的数字特征,了解可视化过程,图形绘制。并且需要掌握Matplotlib模块、常用的机器学习算法等等。

最后就是对于python的入门学习,我们在学习理论、学习python语法基础的同时我们应该多动手、多联系。但是呢,对于我们零基础的小伙伴呢,一般不建议自学。

你肯定要问为什么?我就知道!原因大概有三点:

首先我们自学虽然成本低、学习时间灵活等,但是你想过没,你要自学到就业的程度大概需要多长时间,辞职在家学习,或者买个网课,每天听课、练,你可能需要1年左右,就这你还不一定能够学会、换不一定能够全面掌握企业需要的技术;然后报班学习的学员都已经学完工作半年了。

其次就是学习知识的系统性、前沿性。IT行业的学习一定要系统,不能说我们这里一点那里学一点,完了全是一片一片的知识点,听起来你都有涉及但是真正做项目反而使用不起来,很耽误时间。其次就是前沿性,学习时一定要选择最新的课程大纲、最新的课程。IT行业的技术更新很快。

最后就是就业服务和保障,我们选择报班学习一般都有就业服务,当然我们在学习完也会进行模拟面试和简历指导的等工作。其次就是服务,一般培训机构都有合作企业来招聘,大大增加了我们的就业机会。

总而言之你是零基础选择培训绝对是最快速的转行入门途径!

python数据分析该怎么入门呢?

1.为什么选择Python进行数据分析?

Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特性称为“伪代码”,它可以使你只关心完成什么样的工作任务,而不是纠结于Python的语法。

另外,Python是开源的,它拥有非常多优秀的库,可以用于数据分析及其他领域。更重要的是,Python与最受欢迎的开源大数据平台Hadoop具有很好的兼容性。因此,学习Python对于有志于向大数据分析岗位发展的数据分析师来说,是一件非常节省学习成本的事。

Python的众多优点让它成为最受欢迎的程序设计语言之一,国内外许多公司也已经在使用Python,例YouTube,Google,阿里云等等。

3.数据分析流程

Python是数据分析利器,掌握了Python的编程基础后,就可以逐渐进入数据分析的奇妙世界。CDA数据分析师认为一个完整的数据分析项目大致可分为以下五个流程:

1)数据获取

一般有数据分析师岗位需求的公司都会有自己的数据库,数据分析师可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sql server、mysql、orcale等主流数据库的接口包,比如pymssql、pymysql、cx_Oracle等。

而获取外部数据主要有两种获取方式,一种是获取国内一些网站上公开的数据资料,例如国家统计局;一种是通过编写爬虫代码自动爬取数据。如果希望使用Python爬虫来获取数据,我们可以使用以下Python工具:

Requests-主要用于爬取数据时发出请求操作。

BeautifulSoup-用于爬取数据时读取XML和HTML类型的数据,解析为对象进而处理。

Scapy-一个处理交互式数据的包,可以解码大部分网络协议的数据包

2)数据存储

对于数据量不大的项目,可以使用excel来进行存储和处理,但对于数据量过万的项目,使用数据库来存储与管理会更高效便捷。

3)数据预处理

数据预处理也称数据清洗。大多数情况下,我们拿到手的数据是格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。CDA数据分析师认为数据分析有80%的工作都在处理数据。如果选择Python作为数据清洗的工具的话,我们可以使用Numpy和Pandas这两个工具库:

Numpy - 用于Python中的科学计算。它非常适用于与线性代数,傅里叶变换和随机数相关的运算。它可以很好地处理多维数据,并兼容各种数据库。

Pandas –Pandas是基于Numpy扩展而来的,可以提供一系列函数来处理数据结构和运算,如时间序列等。

4)建模与分析

这一阶段首先要清楚数据的结构,结合项目需求来选取模型。

常见的数据挖掘模型有:

在这一阶段,Python也具有很好的工具库支持我们的建模工作:

scikit-learn-适用Python实现的机器学习算法库。scikit-learn可以实现数据预处理、分类、回归、降维、模型选择等常用的机器学习算法。

Tensorflow-适用于深度学习且数据处理需求不高的项目。这类项目往往数据量较大,且最终需要的精度更高。

5)可视化分析

数据分析最后一步是撰写数据分析报告,这也是数据可视化的一个过程。在数据可视化方面,Python目前主流的可视化工具有:

Matplotlib-主要用于二维绘图,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。

Seaborn-是基于matplotlib产生的一个模块,专攻于统计可视化,可以和Pandas进行无缝链接。

从上图我们也可以得知,在整个数据分析流程,无论是数据提取、数据预处理、数据建模和分析,还是数据可视化,Python目前已经可以很好地支持我们的数据分析工作。

(责任编辑:IT教学网)

更多