怎么使用numpy库,numpy库函数
numpy库怎么安装
numpy库安装方法如下。
1、下载Numpy模块包。输入下载网址“https://pypi.org”,搜索“numpy”,最右侧栏目Navigation“Downloadfiles”。
2、安装python时,将python安装目录下的Scripts文件夹路径加入到系统系统变量中,未操作的可以按此步骤操作“此电脑”,右击“属性”,“高级系统设置”,“环境变量”,“编辑”,“新建”,加入路径。
3、将下载后的文件放到python安装目录下的Scripts文件夹中。
4、windows“开始”,键盘输入“cmd”出现命令提示符进入,更新一下pip输入“python-mpipinstall--upgradeppi”,出现successfullyinstalled……就是安装好了。
5、输入“pipinstallnumpy”,这样numpy模块就安装成功了。最后验证一下numpy在python中能否正常运行。
Python—Numpy库的用法
NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。
NumPy 支持比 Python 更多种类的数值类型。 下表显示了 NumPy 中定义的不同标量数据类型。
[('age', 'i1')]
[10 20 30]
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
每个内建类型都有一个唯一定义它的字符代码:
[[1, 2] [3, 4] [5, 6]]
[[[ 0, 1, 2] [ 3, 4, 5] [ 6, 7, 8] [ 9, 10, 11]] [[12, 13, 14] [15, 16, 17] [18, 19, 20] [21, 22, 23]]]
[1 2 3]
[1 2 3]
[(1, 2, 3) (4, 5)]
原始数组是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改后的数组是: 0 5 10 15 20 25 30 35 40 45 50 55
原始数组是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
原始数组的转置是: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]]
修改后的数组是: 0 5 10 15 20 25 30 35 40 45 50 55
C风格是横着顺序
F风格是竖着的顺序
原始数组是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改后的数组是: [[ 0 10 20 30] [ 40 50 60 70] [ 80 90 100 110]]
第一个数组: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
第二个数组: [1 2 3 4]
修改后的数组是: 0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4
原始数组: [[0 1 2 3] [4 5 6 7]]
调用 flat 函数之后: 5
原数组: [[0 1 2 3] [4 5 6 7]]
展开的数组:默认是A [0 1 2 3 4 5 6 7]
以 F 风格顺序展开的数组: [0 4 1 5 2 6 3 7]
原数组: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
转置数组: [[ 0 4 8] [ 1 5 9] [ 2 6 10] [ 3 7 11]]

用python的numpy创建一个矩阵
使用numpy创建矩阵有2种方法,一种是使用numpy库的matrix直接创建,另一种则是使用array来创建。首先加载numpy库,然后分别用上面说的2种方法来分别构建一个4×3的矩阵,如图
请点击输入图片描述
2
矩阵创建好了,大家看到了2个矩阵长得差不多,是否相等呢?我们用==(python中用==表示等于)来试试看看,如下图
请点击输入图片描述
3
我们下面看看2个矩阵相乘的结果,可以看到使用matrix创建的矩阵m1乘以自身,结果报错了:因为矩阵相乘需要满足一定的条件[1];而使用array创建的矩阵m2乘以自身,结果并没有报错,因为这里用的是Hadamard乘法[2];而m1×m2也报错了,说明只要有一个是matrix,就不能用Hadamard乘法,如图所示
请点击输入图片描述
请点击输入图片描述
请点击输入图片描述
4
下面看几个特殊矩阵[3]:使用np.zeros可以生成零矩阵,使用np.ones可以生成1矩阵,使用np.identity可以生成单位矩阵,使用np.diag可以生成对角矩阵,如图所示
请点击输入图片描述
请点击输入图片描述
5
最后看看矩阵的行向量和列向量提取方法。例如m1[[0,3]]表示提取矩阵m1的第0行和第3行[4],当然也可以用m1[[True,False,False,True]]来达到同样的效果,True就是表示对应的行要提取;而m1[:,[-2,-1]]则是提取矩阵的最后2列的列向量,m1[:,[False,True,True]]的一样可以提取最后2列的列向量,如图所示
请点击输入图片描述
请点击输入图片描述
END
注意事项
[1]在高等数学或者线性代数等已经学过了当后面的矩阵的行数等于前面矩阵的列数时,2个矩阵才可以相乘
[2]Hadamard指的是2个m×n的矩阵相乘,结果仍然是m×n的矩阵,结果为对应元素的乘积
[3]单位矩阵是特殊的对角矩阵,零(1)矩阵是指元素全部是0(1)的矩阵
[4]矩阵的第一行是从0开始编号的,python中的各种编号基本上都是从0开始的