spss数据分析课程文件,spss课程报告

http://www.itjxue.com  2023-01-17 13:09  来源:未知  点击次数: 

spss统计分析课程论文范文

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

spss统计分析论文篇1

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):9.31、9.57、10.21、8.86、8.52、10.53、9.21、9.14

乙(斤):9.98、8.46、8.92、10.14、10.17、11.04、9.43

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

spss统计分析论文篇2

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 13.0版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=0.05,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=0.0626,由于Pα,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在0.05显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

下一页更多精彩的“统 计分 析论 文”

SPSS统计分析相关数据文件的问题

我有15.0的 还有序列号生成器 可以传给你 但不知道你是宽带还是网通 传起来可能有点慢 我的QQ是309817227

SPSS自带案例数据文件介绍及说明

SPSS自带案例数据文件介绍及说明

SPSS自带案例数据文件介绍及说明SPSS初学者对案例数据文件的需求很大,其实在SPSS软件包安装过程中,这些文件已经自动放在你的电脑硬盘中了。那么如何找到它呢,我前面介绍过“SPSS自带案例数据从哪里下载”,需要的同学可以自行查找或下载,今天分享SPSS自带案例数据文件说明,详见下文:

accidents.sav

该假设数据文件涉及某保险公司,该公司正在研究给定区域内汽车事故的年龄和性别风险因子。每个个案对应一个年龄类别和性别类别的交叉分类。

adl.sav

该假设数据文件涉及在确定针对脑卒中患者的建议治疗类型的优点方面的举措。医师将女性脑卒中患者随机分配到两组中的一组。第一组患者接受标准的物理治疗, 而第二组患者则接受附加的情绪治疗。在进行治疗的三个月时间里,将为每个患者进行一般日常生活行为的能力评分并作为原始变量。

advert.sav

该假设数据文件涉及某零售商在检查广告支出与销售业绩之间的关系方面的举措。为此,他们收集了过去的销售数字以及相关的广告成本。

aflatoxin.sav

该假设数据文件涉及对谷物的黄曲霉毒素的检测,该毒素的浓度会因谷物产量的不同(不同谷物之间及同种谷物之间)而有较大变化。谷物加工机从 8 个谷物产量的每一个中收到 16 个样本并以十亿分之几 (PPB) 为单位来测量黄曲霉毒素的水平。

anorectic.sav

在研究厌食/暴食行为的标准症状参照时,研究人员1对 55 名已知存在进食障碍的青少年进行了调查。其中每名患者每年都将进行四次检查,因此总观测数为 220。在每次观测期间,将对这些患者按 16 种症状逐项评分。但 71 号和 76 号患者的症状得分均在时间点 2 缺失,47 号患者的症状得分在时间点 3 缺失,因此有效观测数为 217。

bankloan.sav

该假设数据文件涉及某银行在降低贷款拖欠率方面的举措。该文件包含 850 位过去和潜在客户的财务和人口统计信息。前 700 个个案是以前曾获得贷款的客户。剩下的 150 个个案是潜在客户,银行需要按高或低信用风险对他们进行分类。

bankloan_binning.sav

该假设数据文件包含 5,000 位过去客户的财务和人口统计信息。

behavior.sav

在一个经典示例中2,52 名学生被要求以 10 点的标度对 15 种情况和 15 种行为的组合进行评价,该 10 点的标度从 0 = “极得体”到 9 = “极不得体”。平均值在个人值之上,值被视为相异性。

behavior_ini.sav

该数据文件包含 behavior.sav的二维解的初始配置。

brakes.sav

该假设数据文件涉及某生产高性能汽车盘式制动器的工厂的质量控制。该数据文件包含对 8 台专用机床中每一台的 16 个盘式制动器的直径测量。盘式制动器的目标直径为 322 毫米。

breakfast.sav

在一项经典研究中3,21 名 Wharton School MBA 学生及其配偶被要求按照喜好程度顺序对15 种早餐食品进行评价,从 1 =他们的喜好根据六种不同的情况加以记录,从“全部喜欢”到“只带饮料的快餐”。

breakfast-overall.sav

该数据文件只包含早餐食品喜好的第一种情况,即“全部喜欢”。

broadband_1.sav

该假设数据文件包含各地区订制了全国宽带服务的客户的数量。该数据文件包含 4 年期间 85 个地区每月的订户数量。

broadband_2.sav

该数据文件和 broadband_1.sav一样,但包含另外三个月的数据。

car_insurance_claims.sav

在别处被提出和分析的4关于汽车损坏赔偿的数据集。平均理赔金额可以当作其具有伽玛分布来建模,通过使用逆关联函数将因变量的平均值与投保者年龄、车辆类型和车龄的线性组合关联。提出理赔的数量可以作为刻度权重。

car_sales.sav

该数据文件包含假设销售估计值、订价以及各种品牌和型号的车辆的物理规格。订价和物理规格可以从 edmunds.com和制造商处获得。

car_sales_uprepared.sav

这是 car_sales.sav 的修改版本,不包含字段的任何已转换版本。

carpet.sav

在一个常用示例 5中,一家公司非常重视一种新型地毯清洁用品的市场营销,希望检验以下五种因素对消费者偏好的影响:包装设计、品牌名称、价格、优秀家用品标志和退货保证。包装设计有三个因子级别,每个因子级别因刷体位置而不同;有三个品牌名称(K2R、Glory和Bissell);有三个价格水平;最后两个因素各有两个级别(有或无)。十名消费者对这些因素所定义的 22 个特征进行了排序。变量优选包含对每个概要文件的平均等级的排序。低等级与高偏好相对应。此变量反映了对每个概要文件的偏好的总体度量。

carpet_prefs.sav

该数据文件所基于的示例和在 carpet.sav中所描述的一样,但它还包含从 10 位消费者的每一位中收集到的实际排列顺序。消费者被要求按照从最喜欢到最不喜欢的顺序对 22 个产品概要文件进行排序。carpet_plan.sav中定义了变量 PREF1到 PREF22包含相关特征的标识。

catalog.sav

该数据文件包含某编目公司出售的三种产品的假设每月销售数据。同时还包括 5 个可能的预测变量的数据。

catalog_seasfac.sav

除添加了一组从“季节性分解”过程中计算出来的季节性因素和附带的日期变量外,该数据文件和 catalog.sav是相同的。

cellular.sav

该假设数据文件涉及某便携式电话公司在减少客户流失方面的举措。客户流失倾向分被应用到帐户,分数范围从 0 到 100。得到 50 分或更高分数的帐户可能会更换提供商。

ceramics.sav

该假设数据文件涉及某制造商在确定新型优质合金是否比标准合金具有更高的耐热性方面的举措。每个个案代表对一种合金的单独检验;个案中会记录合金的耐热极限。

cereal.sav

该假设数据文件涉及一份 880 人参于的关于早餐喜好的民意调查,该调查记录了参与者的年龄、性别、婚姻状况以及生活方式是否积极(根据他们是否每周至少做两次运动)。每个个案代表一个单独的响应者。

clothing_defects.sav

这是关于某服装厂的质量控制过程的假设数据文件。检验员要对工厂中每次大批量生产的服装进行抽样检测并清点不合格的服装的数量。

coffee.sav

这是关于六种冰咖啡的认知品牌形象6的数据文件。对于 23 种冰咖啡特征属性中的每种属性,人们选择了由该属性所描述的所有品牌。为保密起见,六种品牌用 AA、BB、CC、DD、EE 和FF 来表示。

contacts.sav

该假设数据文件涉及一组公司计算机销售代表的联系方式列表。根据这些销售代表所在的公司部门及其公司的等级来对每个联系方式进行分类。同时还记录了最近一次的销售量、最近一次销售距今的时间和所联系公司的规模。

creditpromo.sav

该假设数据文件涉及某百货公司在评价最新信用卡促销的效果方面的举措。为此,随机选择了500 位持卡人。其中一半收到了宣传关于在接下来的三个月内降低消费利率的广告。另一半收到了标准的季节性广告。

customer_dbase.sav

该假设数据文件涉及某公司在使用数据仓库中的信息来为最有可能回应的客户提供特惠商品方面的举措。随机选择客户群的子集并为其提供特惠商品,同时记录下他们的回应。

customer_information.sav

该假设数据文件包含客户邮寄信息,如姓名和地址。

customer_subset.sav

来自 customer_dbase.sav的拥有 80 个个案的子集。

debate.sav

该假设数据文件涉及在某政治辩论前后对该辩论的参与者所做的调查的成对回答。每个个案对应一个单独的响应者。

debate_aggregate.sav

该假设数据文件汇总了 debate.sav中的回答。每个个案对应一个辩论前后的偏好的交叉分类。

demo.sav

这是关于购物客户数据库的假设数据文件,用于寄出每月的商品。将记录客户对商品是否有回应以及各种人口统计信息。

demo_cs_1.sav

该假设数据文件涉及某公司在汇编调查信息数据库方面的举措的第一步。每个个案对应不同的城市,并记录地区、省、区和城市标识。

demo_cs_2.sav

该假设数据文件涉及某公司在汇编调查信息数据库方面的举措的第二步。每个个案对应来自第一步中所选城市的不同的家庭单元格,并记录地区、省、区、市、子区和单元格标识。还包括设计前两个阶段的抽样信息。

demo_cs.sav

该假设数据文件包含用复杂抽样设计收集的调查信息。每个个案对应不同的家庭单元格,并记录各种人口统计和抽样信息。

dmdata.sav

该假设数据文件包含直销公司的人口统计学和购买信息。dmdata2.sav包含收到试验邮寄的联系人子集的信息,dmdata3.sav包含未收到试验邮寄的其余联系人的信息。

dietstudy.sav

该假设数据文件包含对 "Stillman diet" 7 的研究结果。每个个案对应一个单独的主体,并记录其在实行饮食方案前后的体重(磅)以及甘油三酸酯的水平(毫克/100 毫升)。

dvdplayer.sav

这是关于开发新的 DVD 播放器的假设数据文件。营销团队用原型收集了焦点小组数据。每个个案对应一个单独的被调查用户,并记录他们的人口统计信息及其对原型问题的回答。

german_credit.sav

该数据文件取自加州大学欧文分校的 Repository of Machine Learning Databases 8中的"German credit" 数据集。

grocery_1month.sav

该假设数据文件是在数据文件 grocery_coupons.sav的基础上加上了每周购物“累计”,所以每个个案对应一个单独的客户。所以,一些每周更改的变量消失了,而且现在记录的消费金额是为期四周的研究过程中的消费金额之和。

grocery_coupons.sav

该假设数据文件包含由重视顾客购物习惯的杂货连锁店收集的调查数据。对每位顾客调查四周,每个个案对应一个单独的顾客周,并记录有关顾客购物地点和方式的信息(包括那一周里顾客在杂货上的消费金额)。

guttman.sav

Bell 9创建了一个表,用来阐释可能的社会群体。Guttman 10引 用了该表的一部分,其中包括五个变量,用于描述以下七个理论社会群体的社会交往、对群体的归属感、成员的物理亲近度以及关系正式性:观众(比如在足球比赛 现场的人们)、听众(比如在剧院或听课堂讲座的人们)、公众(比如报纸或电视观众)、组织群体(与观众类似但具有紧密的关系)、初级群体(关系密切)、次 级群体(自发组织)及现代社区(因在物理上亲近而导致关系松散并需要专业化服务)。

health_funding.sav

该假设数据文件包含关于保健基金(每 100 人的金额)、发病率(每 10,000 人的比率)以及保健提供商拜访率(每 10,000 的比率)的数据。每个个案代表不同的城市。

hivassay.sav

该假设数据文件涉及某药物实验室在开发用于检测 HIV 感染的快速化验方面的举措。化验结果为八个加深的红色阴影,如果有更深的阴影则表示感染的可能性很大。用 2,000 份血液样本来进行实验室试验,其中一半受到 HIV 感染而另一半没有受到感染。

hourlywagedata.sav

该假设数据文件涉及在政府机关和医院工作的具有不同经验水平的护士的时薪。

insurance_claims.sav

该假设数据文件涉及某保险公司,该公司希望构建一个模型用于标记可疑的、具有潜在欺骗性的理赔。每个个案代表一次单独的理赔。

insure.sav

该假设数据文件涉及某保险公司,该公司正在研究指示客户是否会根据 10 年的人寿保险合同提出理赔的风险因子。数据文件中的每个个案代表一副根据年龄和性别进行匹配的合同,其中一份记录了一次理赔而另一份则没有。

judges.sav

该假设数据文件涉及经过训练的裁判(加上一个体操爱好者)对 300 次体操表演给出的分数。每行代表一次单独的表演;裁判们观看相同的表演。

kinship_dat.sav

Rosenberg 和 Kim 11 开始分析 15 个亲属关系项(伯母、兄弟、表兄妹、女儿、父亲、孙女、祖父、祖母、孙子、母亲、侄子或外甥、侄女或外甥女、姐妹、儿子和叔叔)。他们让四组大学生(两组 女同学,两组男同学)根据相似程度将各项排序。他们让其中的两组同学(一组女同学,一组男同学)进行了两次排序,第二次排序和第一次排序采取的标准不同。 这样,一共得到六组“源”。每个源对应一个 15 x 15 的近似值矩阵,其单元格中的值等于源中的人数减去此源中对象被划分的次数。

kinship_ini.sav

该数据文件包含 kinship_dat.sav的三维解的初始配置。

kinship_var.sav

该数据文件包含自变量 gender、gener(ation) 和 degree (of separation),这些变量可用于解释 kinship_dat.sav的解的维数。具体而言,它们可用来将解的空间限制为这些变量的线性组合。

marketvalues.sav

该数据文件涉及 1999–2000 年间 Algonquin,Ill. 地区新的房屋开发中的住房销售。这些销售仅仅来自公众记录。

nhis2000_subset.sav

美国健康访问调查 (NHIS) 是针对美国全体公民的大型人口调查。该调查对美国的具有全国代表性的家庭样本进行了面对面的访问,并获取了每个家庭的成员的健康行为和健康状态的人口统计 信息和观察数据。该数据文件包含取自 2000 年调查信息的子集。国家健康统计中心。2000年美国健康访问调查。公用数据文件和文档。。2003 年发布。

ozone.sav

这些数据包含了用来根据其余变量预测臭氧浓度的六个气象变量的 330 个观察值。在以前的研究人员中,12和 13发现了这些变量之间的非线性,这妨碍了标准回归方法。

pain_medication.sav

该假设数据文件包含用于治疗慢性关节炎疼痛的抗炎药的临床试验结果。我们感兴趣的是该药见效的时间以及它和现有药物的比较。

patient_los.sav

该假设数据文件包含被医院确诊为疑似心肌梗塞(即 MI 或“心脏病发作”)的患者的治疗记录。每个个案对应一位单独的患者,并记录与其住院期有关的一些变量。

patlos_sample.sav

该假设数据文件包含在治疗心肌梗塞(即 MI 或“心脏病发作”)期间收到溶解血栓剂的患者的样本治疗记录。每个个案对应一位单独的患者,并记录与其住院期有关的一些变量。

poll_cs.sav

该假设数据文件涉及民意测验专家在确定正式立法前公众对法案的支持水平方面的举措。个案对应注册的选民。每个个案记录选民居住的县、镇、区。

poll_cs_sample.sav

该假设数据文件包含在 poll_cs.sav中列出的选民的样本。该样本是根据 poll.csplan中指定的设计来选取的,而且该数据文件记录包含概率和样本权重。请注意,由于该抽样计划使用与大小成正比 (PPS) 方法,因此,还有一个文件 (poll_jointprob.sav) 包含联合选择概率。在选取了样本之后,对应于选民人群统计信息及其对提交法案的意见的附加变量将被收集并添加到数据文件。

property_assess.sav

该假设数据文件涉及某县资产评估员在利用有限的资源不断更新资产价值评估方面的举措。个案对应过去一年中县里所出售的资产。数据文件中的每个个案记录资产所在的镇、最后评估资产的评估员、该次评估距今的时间、当时的估价以及资产的出售价格。

property_assess_cs.sav

该假设数据文件涉及某州资产评估员在利用有限的资源不断更新资产价值评估方面的举措。个案对应该州的资产。数据文件中的每个个案记录资产所在的县、镇和区,最后一次评估距今的时间以及当时的估价。

property_assess_cs_sample.sav

该假设数据文件包含在 property_assess_cs.sav中列出的资产的样本。该样本是根据property_assess.csplan中指定的设计来选取的,而且该数据文件记录包含概率和样本权重。在选取了样本之后,附加变量 Current value将被收集并添加到数据文件。

recidivism.sav

该假设数据文件涉及某政府执法机构在了解其管辖区域内的屡犯率方面的举措。每个个案对应先前的一名罪犯,并记录其人口统计信息和第一次犯罪的详细资料;如果在第一次被捕后两年内又第二次被捕,则还将记录两次被捕间隔的时间。

recidivism_cs_sample.sav

该假设数据文件涉及某政府执法机构在了解其管辖区域内的屡犯率方面的举措。每个个案对应在2003 年 6 月期间第一次被捕释放的先前的一名罪犯,并记录其人口统计信息和第一次犯罪的详细资料,及其第二次被捕的数据(如果发生在 2006 年 6 月底之前)。根据recidivism_cs.csplan中指定的抽样计划从抽样部门选择罪犯;该计划使用与大小成正比 (PPS)方法,因此,还有一个文件 (recidivism_cs_jointprob.sav) 包含联合选择概率。

rfm_transactions.sav

此假设数据文件包含购买交易数据,即每笔交易的购买日期、购买商品和消费金额。

salesperformance.sav

这是关于评估两个新的销售培训课程的假设数据文件。60 名员工被分成 3 组且都接受标准的培训。另外,组 2 接受技术培训;组 3 接受实践教程。在培训课程结束时,对每名员工进行测验并记录他们的分数。数据文件中的每个个案代表一名单独的受训者,并记录其被分配到的组以及测验的分 数。

satisf.sav

该假设数据文件涉及某零售公司在 4 个商店位置所进行的满意度调查。总共对 582 位客户进行了调查,每个个案代表一位单独客户的回答。

screws.sav

该数据文件包含关于螺钉、螺栓、螺母和图钉的特征的信息14。

shampoo_ph.sav

这是关于某发制品厂的质量控制的假设数据文件。在规定的时间间隔对六批独立输出的产品进行检测并记录它们的 pH 值。目标范围是 4.5–5.5。

ships.sav

SPSS统计分析基础教程

链接:

?提取码:aye8

SPSS 中级统计实战教程。本课程讲师为高级数据分析师、大学副教授,具有丰富的授课经验。 通过软件操作加实战案例教学,对常用的科研统计分析方法进行讲解,手把手教授 SPSS 软件操作。 让学员不再为统计头疼,可独立解决临床科研常见的统计问题。

这门课你将收获

1. 掌握统计学核心基础理论;

2. SPSS 数据库的构建及数据管理;

3. 利用 SPSS 进行数据的描述性分析;

4. 掌握四大检验分析及结果解读:t 检验、方差分析、卡方检验以及非参数检验;

5. 掌握ROC 曲线的绘制和解读。

课程目录:

数据分析之美

为什么学习统计学及统计误用现状

统计学核心概念

计量资料统计描述

计数资料统计描述

统计学核心思想解读

......

《SPSS统计分析从入门到精通》pdf下载在线阅读,求百度网盘云资源

《SPSS统计分析从入门到精通》(杜强)电子书网盘下载免费在线阅读

资源链接:

链接:

密码:yz23 ?

书名:SPSS统计分析从入门到精通

作者:杜强

豆瓣评分:7.3

出版社:人民邮电出版社

出版年份:2009-3

页数:580

内容简介:

《SPSS统计分析从入门到精通》基于SPSS个人版本SPSS 15.0 for Windows编写,致力于使读者全面了解SPSS,了解和学习如何使用SPSS进行数据融合、数据分析、结果展示等工作,《SPSS统计分析从入门到精通》介绍的是SPSS的窗口和对话框操作方式,着重于SPSS分析软件的实际应用。全书25章,分4个部分。第1-3章重点讲解了数据和文件的管理操作,以及SPSS系统环境的设置。第4-18章主要介绍各种统计分析方法及其对应SPSS过程的操作方式,包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、生存分析、时间序列分析、多重响应分析等几大类。第19章介绍各种统计图形的生成和编辑。第20-25章列举了用SPSS处理多种行业数据的案例,包括:上市公司财务数据分析、影响汇率的因素分析、多因素试验设计等多方面的应用。

《SPSS统计分析基础教程》pdf下载在线阅读,求百度网盘云资源

《SPSS统计分析基础教程》(张文彤)电子书网盘下载免费在线阅读

资源链接:

链接:

提取码:0vqx

书名:SPSS统计分析基础教程

作者:张文彤

豆瓣评分:8.1

出版社:高等教育出版社

出版年份:2004-9

页数:366

内容简介:《SPSS统计分析基础教程》内容简介:SPSS是最为优秀的统计软件之一,深受各行业用户的青睐。为满足广大读者学习统计学入门知识和统计软件入门操作的需求,《SPSS统计分析基础教程》改变了以往SPSS书籍对统计理论和软件操作“两条主线、各自表述”的编写方式,将两者完全融合起来。全书共分15章,以SPSS 12.0为准,针对统计初学者和SPSS初级用户的需求。以统计理论为主线,详细介绍了在SPSS中的界面操作、数据管理、统计图表制作、统计描述和常用单因素统计分析方法的原理与实际操作。其内容覆盖了目前国内大部分专业本科统计课程的教学范围,并结合SPSS的强大功能做了很好的扩展。各章后均附有参考文献和思考练习题,涉及统计理论的章节还提供了本章小结。全书内容深入浅出,风格简洁明快,是一本难得的统计理论与SPSS操作相结合的教材。

《SPSS统计分析基础教程》可用作各专业本科生和研究生的统计学教材,也可作为SPSS 10~12版的通用入门教材,可供各行业中非统计专业背景的人员以及希望从头学习SPSS软件的人员使用。

(责任编辑:IT教学网)

更多