Python读取数据库数据绘图(python读取数据库后生成网页)
如何在python读数据库数据并已图表形式呈现
首先你要知道如何在视图里渲染模板,另外得要看你用的是什么数据库,以及你是否使用django的orm。
拿mysql为例,如果你只需要从现有数据库中查询数据并显示,那么使用MySQLdb模块即可,查询出来的数据和模板进行渲染,之后返回渲染后的模板对象即可。

我们可以用哪些工具做大数据可视化分析?
通过互联网行技术的不断突破,数据可视化分析不仅仅是通过编码才能实现的简单的静态分析展现,而涌现了大批的数据可视化工具。
今天就来讲讲数据可视化吧,我来推荐一些实用的数据可视化工具,这些工具包含:
专业的大数据分析工具
各种Python数据可视化第三方库
其它语言的数据可视化框架
一、专业的大数据分析工具
1、FineReport
FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,它“专业、简捷、灵活”的特点和无码理念,仅需简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。
来看看它做的dashboard吧:
请点击输入图片描述
请点击输入图片描述
很多人看到上述的可视化会好奇,这是什么图表制作的。其实大多由FineReport自带的H5图表。此前有提到FineReport良好的开放性,可让IT同事写代码开发,所以在制作时,也可接入Echarts等第三方控件来制作图表。
请点击输入图片描述
2、FineBI
FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。
首先FineReport作为一款报表工具,主要用于解决提升IT部门的常规/复杂报表开发效率问题;而FineBI是商业智能BI工具,在IT信息部门分类准备好数据业务包的前提下,给与数据,让业务人员或领导自行分析,满足即席数据分析需求,是分析型产品。
FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。
请点击输入图片描述
二、Python的数据可视化第三方库
Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。
1、pyecharts
Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。
2、Bokeh
Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能地可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。
请点击输入图片描述
三、其他数据可视化工具
1、Echarts
前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。
大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。
请点击输入图片描述
2、D3
D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。
如何用python连接 tableau 数据库,然后读取数据
选择“数据”“连接到数据”或按键盘上的 Ctrl + D。也可以在开始页面上选择“连接到数据”选项。
2. 在“连接到数据”页面上,选择要连接的数据类型。也可以选择保存的数据连接(TDS 文件)打开一个 Tableau Server 数据源。
3. 连接到数据的另一种方式是从工作簿导入。工作簿可以包含与不同数据源的多个连接。若要从工作簿导入连接,请在“连接到数据”对话框中单击“选择保存的连接”选项卡底部的“从工作簿导入”按钮。
显示连接信息
可以显示有关连接的信息,方法是在“数据”菜单中选择数据源,然后选择“属性”。下面显示了示例数据源的属性。
连接到自定义 SQL 查询
对于大多数关系数据源,可以连接到特定查询,而非整个数据源。
在连接对话框中选择“自定义 SQL”。
在文本框中键入或粘贴查询。单击文本框右上角的“浏览”按钮 会打开更大的编辑窗口,可进行更复杂的查询或添加参数。
注意:完成连接后,Tableau 的数据窗口只显示相关字段。
如果 SQL 查询引用重复列,则在尝试使用 Tableau 中的列之一时,可能会出现错误。即使查询有效,也会发生这种情况。例如,考虑以下查询:
SELECT * from authors, titleauthor where authors.au_id = titleauthor.au_id 该查询有效,但因为 au_id 字段在“authors”表和“titleauthor”表中都存在,因此该字段不明确。Tableau 将连接到查询,但只要尝试使用 au_id 字段,就会出现错误。原因是 Tableau 不知道要引用哪个表。
编辑连接
在“数据”菜单中选择数据源,然后选择“编辑连接”。
如何使用python对数据库进行操作
你可以访问Python数据库接口及API查看详细的支持数据库列表。不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块。
DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多种多样的数据库接口程序提供一致的访问接口 。
Python的DB-API,为大多数的数据库实现了接口,使用它连接各数据库后,就可以用相同的方式操作各数据库。
Python DB-API使用流程:
引入 API 模块。
获取与数据库的连接。
执行SQL语句和存储过程。
关闭数据库连接。
什么是MySQLdb?
MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的。
如何安装MySQLdb?
为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL。复制以下代码,并执行:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
如果执行后的输出结果如下所示,意味着你没有安装 MySQLdb 模块:
Traceback (most recent call last):
File "test.py", line 3, in module
import MySQLdb
ImportError: No module named MySQLdb
如何用 Python 实现一个图数据库(Graph Database)?
本文章是 重写 500 Lines or Less 系列的其中一篇,目标是重写 500 Lines or Less 系列的原有项目:Dagoba: an in-memory graph database。
Dagoba 是作者设计用来展示如何从零开始自己实现一个图数据库( Graph Database )。该名字似乎来源于作者喜欢的一个乐队,另一个原因是它的前缀 DAG 也正好是有向无环图 ( Directed Acyclic Graph ) 的缩写。本文也沿用了该名称。
图是一种常见的数据结构,它将信息描述为若干独立的节点( vertex ,为了和下文的边更加对称,本文中称为 node ),以及把节点关联起来的边( edge )。我们熟悉的链表以及多种树结构可以看作是符合特定规则的图。图在路径选择、推荐算法以及神经网络等方面都是重要的核心数据结构。
既然图的用途如此广泛,一个重要的问题就是如何存储它。如果在传统的关系数据库中存储图,很自然的做法就是为节点和边各自创建一张表,并用外键把它们关联起来。这样的话,要查找某人所有的子女,就可以写下类似下面的查询:
还好,不算太复杂。但是如果要查找孙辈呢?那恐怕就要使用子查询或者 CTE(Common Table Expression) 等特殊构造了。再往下想,曾孙辈又该怎么查询?孙媳妇呢?
这样我们会意识到,SQL 作为查询语言,它只是对二维数据表这种结构而设计的,用它去查询图的话非常笨拙,很快会变得极其复杂,也难以扩展。针对图而言,我们希望有一种更为自然和直观的查询语法,类似这样:
为了高效地存储和查询图这种数据结构,图数据库( Graph Database )应运而生。因为和传统的关系型数据库存在极大的差异,所以它属于新型数据库也就是 NoSql 的一个分支(其他分支包括文档数据库、列数据库等)。图数据库的主要代表包括 Neo4J 等。本文介绍的 Dagoba 则是具备图数据库核心功能、主要用于教学和演示的一个简单的图数据库。
原文代码是使用 JavaScript 编写的,在定义调用接口时大量使用了原型( prototype )这种特有的语言构造。对于其他主流语言的用户来说,原型的用法多少显得有些别扭和不自然。
考虑到本系列其他数据库示例大多是用 Python 实现的,本文也按照传统,用 Python 重写了原文的代码。同样延续之前的惯例,为了让读者更好地理解程序是如何逐步完善的,我们用迭代式的方法完成程序的各个组成部分。
原文在 500lines 系列的 Github 仓库中只包含了实现代码,并未包含测试。按照代码注释说明,测试程序位于作者的另一个代码库中,不过和 500lines 版本的实现似乎略有不同。
本文实现的代码参考了原作者的测试内容,但跳过了北欧神话这个例子——我承认确实不熟悉这些神祇之间的亲缘关系,相信中文背景的读者们多数也未必了解,虽然作者很喜欢这个例子,想了想还是不要徒增困惑吧。因此本文在编写测试用例时只参考了原文关于家族亲属的例子,放弃了神话相关的部分,尽管会减少一些趣味性,相信对于入门级的代码来说这样也够用了。
本文实现程序位于代码库的 dagoba 目录下。按照本系列程序的同意规则,要想直接执行各个已完成的步骤,读者可以在根目录下的 main.py 找到相应的代码位置,取消注释并运行即可。
本程序的所有步骤只需要 Python3 ,测试则使用内置的 unittest , 不需要额外的第三方库。原则上 Python3.6 以上版本应该都可运行,但我只在 Python3.8.3 环境下完整测试过。
本文实现的程序从最简单的案例开始,通过每个步骤逐步扩展,最终形成一个完整的程序。这些步骤包括:
接下来依次介绍各个步骤。
回想一下,图数据库就是一些点( node )和边( edge )的集合。现在我们要做出的一个重大决策是如何对节点/边进行建模。对于边来说,必须指定它的关联关系,也就是从哪个节点指向哪个节点。大多数情况下边是有方向的——父子关系不指明方向可是要乱套的!
考虑到扩展性及通用性问题,我们可以把数据保存为字典( dict ),这样可以方便地添加用户需要的任何数据。某些数据是为数据库内部管理而保留的,为了明确区分,可以这样约定:以下划线开头的特殊字段由数据库内部维护,类似于私有成员,用户不应该自己去修改它们。这也是 Python 社区普遍遵循的约定。
此外,节点和边存在互相引用的关系。目前我们知道边会引用到两端的节点,后面还会看到,为了提高效率,节点也会引用到边。如果仅仅在内存中维护它们的关系,那么使用指针访问是很直观的,但数据库必须考虑到序列化到磁盘的问题,这时指针就不再好用了。
为此,最好按照数据库的一般要求,为每个节点维护一个主键( _id ),用主键来描述它们之间的关联关系。
我们第一步要把数据库的模型建立起来。为了测试目的,我们使用一个最简单的数据库模型,它只包含两个节点和一条边,如下所示:
按照 TDD 的原则,首先编写测试:
与原文一样,我们把数据库管理接口命名为 Dagoba 。目前,能够想到的最简单的测试是确认节点和边是否已经添加到数据库中:
assert_item 是一个辅助方法,用于检查字典是否包含预期的字段。相信大家都能想到该如何实现,这里就不再列出了,读者可参考 Github 上的完整源码。
现在,测试是失败的。用最简单的办法实现数据库:
需要注意的是,不管添加节点还是查询,程序都使用了拷贝后的数据副本,而不是直接使用原始数据。为什么要这样做?因为字典是可变的,用户可以在任何时候修改其中的内容,如果数据库不知道数据已经变化,就很容易发生难以追踪的一致性问题,最糟糕的情况下会使得数据内容彻底混乱。
拷贝数据可以避免上述问题,代价则是需要占用更多内存和处理时间。对于数据库来说,通常查询次数要远远多于修改,所以这个代价是可以接受的。
现在测试应该正常通过了。为了让它更加完善,我们可以再测试一些边缘情况,看看数据库能否正确处理异常数据,比如:
例如,如果用户尝试添加重复主键,我们预期应抛出 ValueError 异常。因此编写测试如下:
为了满足以上测试,代码需要稍作修改。特别是按照 id 查找主键是个常用操作,通过遍历的方法效率太低了,最好是能够通过主键直接访问。因此在数据库中再增加一个字典:
完整代码请参考 Github 仓库。
在上个步骤,我们在初始化数据库时为节点明确指定了主键。按照数据库设计的一般原则,主键最好是不具有业务含义的代理主键( Surrogate key ),用户不应该关心它具体的值是什么,因此让数据库去管理主键通常是更为合理的。当然,在部分场景下——比如导入外部数据——明确指定主键仍然是有用的。
为了同时支持这些要求,我们这样约定:字段 _id 表示节点的主键,如果用户指定了该字段,则使用用户设置的值(当然,用户有责任保证它们不会重复);否则,由数据库自动为它分配一个主键。
如果主键是数据库生成的,事先无法预知它的值是什么,而边( edge )必须指定它所指向的节点,因此必须在主键生成后才能添加。由于这个原因,在动态生成主键的情况下,数据库的初始化会略微复杂一些。还是先写一个测试:
为支持此功能,我们在数据库中添加一个内部字段 _next_id 用于生成主键,并让 add_node 方法返回新生成的主键:
接下来,再确认一下边是否可以正常访问:
运行测试,一切正常。这个步骤很轻松地完成了,不过两个测试( DbModelTest 和 PrimaryKeyTest )出现了一些重复代码,比如 get_item 。我们可以把这些公用代码提取出来。由于 get_item 内部调用了 TestCase.assertXXX 等方法,看起来应该使用继承,但从 TestCase 派生基类容易引起一些潜在的问题,所以我转而使用另一个技巧 Mixin :
实现数据库模型之后,接下来就要考虑如何查询它了。
在设计查询时要考虑几个问题。对于图的访问来说,几乎总是由某个节点(或符合条件的某一类节点)开始,从与它相邻的边跳转到其他节点,依次类推。所以链式调用对查询来说是一种很自然的风格。举例来说,要知道 Tom 的孙子养了几只猫,可以使用类似这样的查询:
可以想象,以上每个方法都应该返回符合条件的节点集合。这种实现是很直观的,不过存在一个潜在的问题:很多时候用户只需要一小部分结果,如果它总是不计代价地给我们一个巨大的集合,会造成极大的浪费。比如以下查询:
为了避免不必要的浪费,我们需要另外一种机制,也就是通常所称的“懒式查询”或“延迟查询”。它的基本思想是,当我们调用查询方法时,它只是把查询条件记录下来,而并不立即返回结果,直到明确调用某些方法时才真正去查询数据库。
如果读者比较熟悉流行的 Python ORM,比如 SqlAlchemy 或者 Django ORM 的话,会知道它们几乎都是懒式查询的,要调用 list(result) 或者 result[0:10] 这样的方法才能得到具体的查询结果。
在 Dagoba 中把触发查询的方法定义为 run 。也就是说,以下查询执行到 run 时才真正去查找数据:
和懒式查询( Lazy Query )相对应的,直接返回结果的方法一般称作主动查询( Eager Query )。主动查询和懒式查询的内在查找逻辑基本上是相同的,区别只在于触发机制不同。由于主动查询实现起来更加简单,出错也更容易排查,因此我们先从主动查询开始实现。
还是从测试开始。前面测试所用的简单数据库数据太少,难以满足查询要求,所以这一步先来创建一个更复杂的数据模型:
此关系的复杂之处之一在于反向关联:如果 A 是 B 的哥哥,那么 B 就是 A 的弟弟/妹妹,为了查询到他们彼此之间的关系,正向关联和反向关联都需要存在,因此在初始化数据库时需要定义的边数量会很多。
当然,父子之间也存在反向关联的问题,为了让问题稍微简化一些,我们目前只需要向下(子孙辈)查找,可以稍微减少一些关联数量。
因此,我们定义数据模型如下。为了减少重复工作,我们通过 _backward 字段定义反向关联,而数据库内部为了查询方便,需要把它维护成两条边:
然后,测试一个最简单的查询,比如查找某人的所有孙辈:
这里 outcome/income 分别表示从某个节点出发、或到达它的节点集合。在原作者的代码中把上述方法称为 out/in 。当然这样看起来更加简洁,可惜的是 in 在 Python 中是个关键字,无法作为函数名。我也考虑过加个下划线比如 out_.in_ 这种形式,但看起来也有点怪异,权衡之后还是使用了稍微啰嗦一点的名称。
现在我们可以开始定义查询接口了。在前面已经说过,我们计划分别实现两种查询,包括主动查询( Eager Query )以及延迟查询( Lazy Query )。
它们的内在查询逻辑是相通的,看起来似乎可以使用继承。不过遵循 YAGNI 原则,目前先不这样做,而是只定义两个新类,在满足测试的基础上不断扩展。以后我们会看到,与继承相比,把共同的逻辑放到数据库本身其实是更为合理的。
接下来实现访问节点的方法。由于 EagerQuery 调用查询方法会立即返回结果,我们把结果记录在 _result 内部字段中。虽然 node 方法只返回单个结果,但考虑到其他查询方法几乎都是返回集合,为统一起见,让它也返回集合,这样可以避免同时支持集合与单结果的分支处理,让代码更加简洁、不容易出错。此外,如果查询对象不存在的话,我们只返回空集合,并不视为一个错误。
查询输入/输出节点的方法实现类似这样:
查找节点的核心逻辑在数据库本身定义:
以上使用了内部定义的一些辅助查询方法。用类似的逻辑再定义 income ,它们的实现都很简单,读者可以直接参考源码,此处不再赘述。
在此步骤的最后,我们再实现一个优化。当多次调用查询方法后,结果可能会返回重复的数据,很多时候这是不必要的。就像关系数据库通常支持 unique/distinct 一样,我们也希望 Dagoba 能够过滤重复的数据。
假设我们要查询某人所有孩子的祖父,显然不管有多少孩子,他们的祖父应该是同一个人。因此编写测试如下:
现在来实现 unique 。我们只要按照主键把重复数据去掉即可:
在上个步骤,初始化数据库指定了双向关联,但并未测试它们。因为我们还没有编写代码去支持它们,现在增加一个测试,它应该是失败的:
运行测试,的确失败了。我们看看要如何支持它。回想一下,当从边查找节点时,使用的是以下方法:
这里也有一个潜在的问题:调用 self.edges 意味着遍历所有边,当数据库内容较多时,这是巨大的浪费。为了提高性能,我们可以把与节点相关的边记录在节点本身,这样要查找边只要看节点本身即可。在初始化时定义出入边的集合:
在添加边时,我们要同时把它们对应的关系同时更新到节点,此外还要维护反向关联。这涉及对字典内容的部分复制,先编写一个辅助方法:
然后,将添加边的实现修改如下:
这里的代码同时添加正向关联和反向关联。有的朋友可能会注意到代码略有重复,是的,但是重复仅出现在该函数内部,本着“三则重构”的原则,暂时不去提取代码。
实现之后,前面的测试就可以正常通过了。
在这个步骤中,我们来实现延迟查询( Lazy Query )。
延迟查询的要求是,当调用查询方法时并不立即执行,而是推迟到调用特定方法,比如 run 时才执行整个查询,返回结果。
延迟查询的实现要比主动查询复杂一些。为了实现延迟查询,查询方法的实现不能直接返回结果,而是记录要执行的动作以及传入的参数,到调用 run 时再依次执行前面记录下来的内容。
如果你去看作者的实现,会发现他是用一个数据结构记录执行操作和参数,此外还有一部分逻辑用来分派对每种结构要执行的动作。这样当然是可行的,但数据处理和分派部分的实现会比较复杂,也容易出错。
本文的实现则选择了另外一种不同的方法:使用 Python 的内部函数机制,把一连串查询变换成一组函数,每个函数取上个函数的执行结果作为输入,最后一个函数的输出就是整个查询的结果。由于内部函数同时也是闭包,尽管每个查询的参数形式各不相同,但是它们都可以被闭包“捕获”而成为内部变量,所以这些内部函数可以采用统一的形式,无需再针对每种查询设计额外的数据结构,因而执行过程得到了很大程度的简化。
首先还是来编写测试。 LazyQueryTest 和 EagerQueryTest 测试用例几乎是完全相同的(是的,两种查询只在于内部实现机制不同,它们的调用接口几乎是完全一致的)。
因此我们可以把 EagerQueryTest 的测试原样不变拷贝到 LazyQueryTest 中。当然拷贝粘贴不是个好注意,对于比较冗长而固定的初始化部分,我们可以把它提取出来作为两个测试共享的公共函数。读者可参考代码中的 step04_lazy_query/tests/test_lazy_query.py 部分。
程序把查询函数的串行执行称为管道( pipeline ),用一个变量来记录它:
然后依次实现各个调用接口。每种接口的实现都是类似的:用内部函数执行真正的查询逻辑,再把这个函数添加到 pipeline 调用链中。比如 node 的实现类似下面:
其他接口的实现也与此类似。最后, run 函数负责执行所有查询,返回最终结果;
完成上述实现后执行测试,确保我们的实现是正确的。
在前面我们说过,延迟查询与主动查询相比,最大的优势是对于许多查询可以按需要访问,不需要每个步骤都返回完整结果,从而提高性能,节约查询时间。比如说,对于下面的查询:
以上查询的意思是从孙辈中找到一个符合条件的节点即可。对该查询而言,主动查询会在调用 outcome('son') 时就遍历所有节点,哪怕最后一步只需要第一个结果。而延迟查询为了提高效率,应在找到符合条件的结果后立即停止。
目前我们尚未实现 take 方法。老规矩,先添加测试:
主动查询的 take 实现比较简单,我们只要从结果中返回前 n 条记录:
延迟查询的实现要复杂一些。为了避免不必要的查找,返回结果不应该是完整的列表( list ),而应该是个按需返回的可迭代对象,我们用内置函数 next 来依次返回前 n 个结果:
写完后运行测试,确保它们是正确的。
从外部接口看,主动查询和延迟查询几乎是完全相同的,所以用单纯的数据测试很难确认后者的效率一定比前者高,用访问时间来测试也并不可靠。为了测试效率,我们引入一个节点访问次数的概念,如果延迟查询效率更高的话,那么它应该比主动查询访问节点的次数更少。
为此,编写如下测试:
我们为 Dagoba 类添加一个成员来记录总的节点访问次数,以及两个辅助方法,分别用于获取和重置访问次数:
然后浏览代码,查找修改点。增加计数主要在从边查找节点的时候,因此修改部分如下:
此外还有 income/outcome 方法,修改都很简单,这里就不再列出。
实现后再次运行测试。测试通过,表明延迟查询确实在效率上优于主动查询。
不像关系数据库的结构那样固定,图的形式可以千变万化,查询机制也必须足够灵活。从原理上讲,所有查询无非是从某个节点出发按照特定方向搜索,因此用 node/income/outcome 这三个方法几乎可以组合出任意所需的查询。
但对于复杂查询,写出的代码有时会显得较为琐碎和冗长,对于特定领域来说,往往存在更为简洁的名称,例如:母亲的兄弟可简称为舅舅。对于这些场景,如果能够类似 DSL (领域特定语言)那样允许用户根据专业要求自行扩展,从而简化查询,方便阅读,无疑会更为友好。
如果读者去看原作者的实现,会发现他是用一种特殊语法 addAlias 来定义自己想要的查询,调用方法时再进行查询以确定要执行的内容,其接口和内部实现都是相当复杂的。
而我希望有更简单的方法来实现这一点。所幸 Python 是一种高度动态的语言,允许在运行时向类中增加新的成员,因此做到这一点可能比预想的还要简单。
为了验证这一点,编写测试如下:
无需 Dagoba 的实现做任何改动,测试就可以通过了!其实我们要做的就是动态添加一个自定义的成员函数,按照 Python 对象机制的要求,成员函数的第一个成员应该是名为 self 的参数,但这里已经是在 UnitTest 的内部,为了和测试类本身的 self 相区分,新函数的参数增加了一个下划线。
此外,函数应返回其所属的对象,这是为了链式调用所要求的。我们看到,动态语言的灵活性使得添加新语法变得非常简单。
到此,一个初具规模的图数据库就形成了。
和原文相比,本文还缺少一些内容,比如如何将数据库序列化到磁盘。不过相信读者都看到了,我们的数据库内部结构基本上是简单的原生数据结构(列表+字典),因此序列化无论用 pickle 或是 JSON 之类方法都应该是相当简单的。有兴趣的读者可以自行完成它们。
我们的图数据库实现为了提高查询性能,在节点内部存储了边的指针(或者说引用)。这样做的好处是,无论数据库有多大,从一个节点到相邻节点的访问是常数时间,因此数据访问的效率非常高。
但一个潜在的问题是,如果数据库规模非常大,已经无法整个放在内存中,或者出于安全性等原因要实现分布式访问的话,那么指针就无法使用了,必须要考虑其他机制来解决这个问题。分布式数据库无论采用何种数据模型都是一个棘手的问题,在本文中我们没有涉及。有兴趣的读者也可以考虑 500lines 系列中关于分布式和集群算法的其他一些文章。
本文的实现和系列中其他数据库类似,采用 Python 作为实现语言,而原作者使用的是 JavaScript ,这应该和作者的背景有关。我相信对于大多数开发者来说, Python 的对象机制比 JavaScript 基于原型的语法应该是更容易阅读和理解的。
当然,原作者的版本比本文版本在实现上其实是更为完善的,灵活性也更好。如果想要更为优雅的实现,我们可以考虑使用 Python 元编程,那样会更接近于作者的实现,但也会让程序的复杂性大为增加。如果读者有兴趣,不妨对照着去读读原作者的版本。
求助用python从数据库取数据动态生成表格的方法
一、可使用的第三方库
python中处理excel表格,常用的库有xlrd(读excel)表、xlwt(写excel)表、openpyxl(可读写excel表)等。xlrd读数据较大的excel表时效率高于openpyxl,所以我在写脚本时就采用了xlrd和xlwt这两个库。介绍及下载地址为: 这些库文件都没有提供修改现有excel表格内容的功能。一般只能将原excel中的内容读出、做完处理后,再写入一个新的excel文件。
二、常见问题
使用python处理excel表格时,发现两个个比较难缠的问题:unicode编码和excel中记录的时间。
因为python的默认字符编码都为unicode,所以打印从excel中读出的中文或读取中文名的excel表或sheet时,程序提示错误UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)。这是由于在windows中,中文使用了gb2312编码方式,python将其当作unicode和ascii来解码都不正确才报出的错误。使用VAR.encode('gb2312')即可解决打印中文的问题。(很奇怪,有的时候虽然能打印出结果,但显示的不是中文,而是一堆编码。)若要从中文文件名的excel表中读取数据,可在文件名前加‘u’表示将该中文文件名采用unicode编码。
有excel中,时间和日期都使用浮点数表示。可看到,当‘2013年3月20日’所在单元格使用‘常规’格式表示后,内容变为‘41353’;当其单元格格式改变为日期后,内容又变为了‘2013年3月20日’。而使用xlrd读出excel中的日期和时间后,得到是的一个浮点数。所以当向excel中写入的日期和时间为一个浮点数也不要紧,只需将表格的表示方式改为日期和时间,即可得到正常的表示方式。excel中,用浮点数1表示1899年12月31日。
三、常用函数
以下主要介绍xlrd、xlwt、datetime中与日期相关的函数。
import xlrd
import xlwt
from datetime
def testXlrd(filename):
book=xlrd.open_workbook(filename)
sh=book.sheet_by_index(0)
print "Worksheet name(s): ",book.sheet_names()[0]
print 'book.nsheets',book.nsheets
print 'sh.name:',sh.name,'sh.nrows:',sh.nrows,'sh.ncols:',sh.ncols
print 'A1:',sh.cell_value(rowx=0,colx=1)
#如果A3的内容为中文
print 'A2:',sh.cell_value(0,2).encode('gb2312')
def testXlwt(filename):
book=xlwt.Workbook()
sheet1=book.add_sheet('hello')
book.add_sheet('word')
sheet1.write(0,0,'hello')
sheet1.write(0,1,'world')
row1 = sheet1.row(1)
row1.write(0,'A2')
row1.write(1,'B2')
sheet1.col(0).width = 10000
sheet2 = book.get_sheet(1)
sheet2.row(0).write(0,'Sheet 2 A1')
sheet2.row(0).write(1,'Sheet 2 B1')
sheet2.flush_row_data()
sheet2.write(1,0,'Sheet 2 A3')
sheet2.col(0).width = 5000
sheet2.col(0).hidden = True
book.save(filename)
if __name__=='__main__':
testXlrd(u'你好。xls')
testXlwt('helloWord.xls')
base=datetime.date(1899,12,31).toordinal()
tmp=datetime.date(2013,07,16).toordinal()
print datetime.date.fromordinal(tmp+base-1).weekday()