2025Äê½×³Ëº¯ÊýµÝ¹éËã·¨£¨2025Äê½×³ËµÝ¹éËã·¨Á÷³Ìͼ£©
½×³ËµÄµÝ¹éËã·¨ÊÇÔõÑùµÄ?
½×³ËµÄ¶¨ÒåÊÇ£ºn£¡ = n * * * * 1£¬ÌØ±ðµØ£¬0£¡ = 1¡£Ê¹Óõݹ鷨£¬ÎÒÃÇ¿ÉÒÔ½«n£¡±íʾΪn³ËÒÔ£¡£¬¶ø£¡ÓÖ¿ÉÒÔ±íʾΪ³ËÒÔ£¡£¬ÒÔ´ËÀàÍÆ£¬Ö±µ½1£¡»ò0£¡¡£µÝ¹éº¯Êý¶¨Ò壺¶¨ÒåÒ»¸öµÝ¹éº¯Êýf£¬ÆäÖÐf = n * f£¬µ±n 0ʱ¡£µ±n = 0ʱ£¬f = 1£¬ÕâÊǵݹéµÄ»ù×¼Çé¿ö¡£
ÇónµÄ½×³Ë¿ÉÒÔÃèÊöÈçÏ£ºn£¡=n*£¨n-1£©£¡£¨n-1£©£¡=£¨n-1£©*£¨n-2£©£¡£¨n-2£©£¡=£¨n-2£©*£¨n-3£©£¡£¨n-3£©£¡=£¨n-3£©*£¨n-4£©£¡...2£¡=2*1£¡1£¡=0£¡0£¡=1 1£¡=1 Èç¹û°Ñn£¡Ð´³Éº¯ÊýÐÎʽ£¬¼´f£¨n£©£¬Ôòf£¨5£©¾ÍÊDZíʾ5£¡¡£
00490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000 n£¡=1¡Á2¡Á3¡Á...¡Án¡£½×³ËÒà¿ÉÒԵݹ鷽ʽ¶¨Ò壺0£¡=1£¬n£¡=£¨n-1£©£¡¡Án¡£Ò༴n£¡=1¡Á2¡Á3¡Á...¡Án¡£½×³ËÒà¿ÉÒԵݹ鷽ʽ¶¨Ò壺0£¡=1£¬n£¡=£¨n-1£©£¡¡Án¡£
³£¼û´íÎóÑ¡Ïî±æÎöO£¨nlogn£©£º³£¼ûÓÚ·ÖÖÎËã·¨£¨Èç¹é²¢ÅÅÐò£©£¬ÆäµÝ¹éÊ÷Éî¶ÈΪlognÇÒÿ²ã×ܲÙ×÷ÊýΪO£¨n£©¡£µ«½×³ËµÝ¹éδ·Ö¸îÎÊÌâ¹æÄ££¬Ã¿´Î½ö¼õÉÙ1£¬¹Ê²»ÊÊÓá£O£¨n£©£ºÈôÿ´ÎµÝ¹é°üº¬O£¨n£©²Ù×÷£¨ÈçǶÌ×Ñ»·£©£¬Ôò×ܸ´ÔÓ¶ÈΪO£¨n£©¡£

ËÄܸøÎÒ¾Ù¸öÀý×Ó½âÊÍϵݹéÊÇʲôÒâ˼?
1¡¢µÝ¹éÊÇÒ»ÖÖº¯Êý×ÔÉíµ÷ÓÃ×Ô¼ºµÄ±à³Ì¼¼ÇÉ£¬ÓÃÓÚ½â¾öÌØ¶¨ÎÊÌâ¡£ÒÔÏÂÊÇÁ½¸öµÝ¹éµÄÀý×ÓÀ´½âÊÍÕâÒ»¸ÅÄFibonacciÊýÁУº¶¨Ò壺FibonacciÐòÁÐ1£¬1£¬2£¬3£¬5£¬8µÄµÚN¸öÊý£¬ÆäµÝ¹é¶¨ÒåΪf = f + f¡£µÝ¹éʵÏÖ£ºÒ»¸öº¯ÊýFibonacci£¬µ±n 3ʱ·µ»Ø1£¬·ñÔò·µ»ØFibonacci + Fibonacci¡£
2¡¢µÝ¹éÊÇÒ»ÖÖÔÚº¯Êý»òËã·¨Öе÷ÓÃ×ÔÉíµÄ±à³Ì¼¼ÇÉ¡£ÒÔÏÂÊÇÒ»¸ö¹ØÓڵݹéµÄÀý×Ó¼°Æä½âÊÍ£ºµÝ¹éÀý×Ó£º¼ÆËã½×³Ë ¼ÙÉèÎÒÃÇÒª¼ÆËãÒ»¸öÕýÕûÊýnµÄ½×³Ë¡£½×³ËµÄ¶¨ÒåÊÇ£ºn£¡ = n ¡Á ¡Á ¡Á ¡Á 1¡£ÀýÈ磬5µÄ½×³ËÊÇ5 ¡Á 4 ¡Á 3 ¡Á 2 ¡Á 1 = 120¡£
3¡¢µÝ¹éÊÇÒ»ÖÖ±à³Ì¼¼ÇÉ£¬Ö¸µÄÊÇÔÚº¯Êý»òËã·¨Öе÷ÓÃ×ÔÉíµÄ¹ý³Ì¡£½ÓÏÂÀ´Ïêϸ½âÊ͵ݹéµÄ¸ÅÄµÝ¹éµÄ»ù±¾º¬Òå µÝ¹éµÄ±¾ÖÊÊÇ×ÔÎÒ¸´ÖÆ¡£µ±Ò»¸öº¯Êý»òËã·¨ÔÚÖ´Ðйý³ÌÖУ¬Ö±½Ó»ò¼ä½ÓµØµ÷ÓÃ×ÔÉí£¬¾Í¹¹³ÉÁ˵ݹ顣
4¡¢Àí½âµÝ¹é²¢·ÇÄÑÊ£¬¹Ø¼üÔÚÓÚÕÒµ½Êµ¼ÊÓ¦ÓõÄÀý×Ó¡£µÝ¹éµÄºËÐÄÊǺ¯Êý×ÔÉíµ÷ÓÃ×Ô¼º£¬ÒÔ½â¾öÌØ¶¨ÎÊÌâ¡£ÈÃÎÒÃÇͨ¹ýÒ»¸öFibonacciÊýÁеÄÀý×ÓÀ´Ö±¹Û¸ÐÊÜ¡£FibonacciÐòÁÐ1£¬1£¬2£¬3£¬5£¬..µÄµÚN¸öÊý¼ÆË㣬ÆäµÝ¹é¶¨ÒåΪf£¨N£© = f£¨n-1£© + f£¨n-2£©¡£
5¡¢º¬Òå ³ÌÐòµ÷ÓÃ×ÔÉíµÄ±à³Ì¼¼ÇɳÆÎªµÝ¹é£¨ recursion£©¡£µÝ¹é×öΪһÖÖËã·¨ÔÚ³ÌÐòÉè¼ÆÓïÑÔÖй㷺ӦÓá£
µÝ¹é¼ÆËãnµÄ½×³ËµÄʱ¼ä¸´ÔÓ¶È
1¡¢µÝ¹é¼ÆËãnµÄ½×³ËµÄʱ¼ä¸´ÔÓ¶ÈΪO£¨n£©¡£¾ßÌå·ÖÎöÈçÏ£ºµÝ¹é¹ý³ÌÓëÏßÐÔ¹ØÏµµÝ¹é¼ÆËã½×³ËµÄºËÐÄÂß¼ÊÇ£º»ù±¾Çé¿ö£ºµ±n ¡Ü 1ʱ£¬Ö±½Ó·µ»Ø1£¨Ê±¼ä¸´ÔÓ¶ÈΪO£¨1£©¡£µÝ¹é²½Ö裺µ±n 1ʱ£¬º¯Êýµ÷ÓÃ×ÔÉí¼ÆË㣨n-1£©£¡£¬²¢½«½á¹ûÓënÏà³Ë£¨Ê±¼ä¸´ÔÓ¶ÈΪO£¨1£©µÄ³Ë·¨²Ù×÷£©¡£
2¡¢```¸ÃËã·¨µÄʱ¼ä¸´ÔÓ¶ÈΪO£¨n£©£¬¿Õ¼ä¸´ÔÓ¶ÈΪO£¨n£©¡£·½·¨¶þ£ºÑ»·Ëã·¨ Ñ»·Ëã·¨ÊÇÁíÒ»ÖÖ³£ÓõļÆËã½×³ËµÄ·½·¨¡£Ñ»·Ëã·¨µÄ»ù±¾Ë¼ÏëÊÇÀûÓÃÑ»·½á¹¹£¬Öð²½À۳˵õ½½×³ËµÄÖµ¡£
3¡¢½×³ËµÄ¶¨ÒåÊÇ£ºn£¡ = n * * * * 1£¬ÌØ±ðµØ£¬0£¡ = 1¡£Ê¹Óõݹ鷨£¬ÎÒÃÇ¿ÉÒÔ½«n£¡±íʾΪn³ËÒÔ£¡£¬¶ø£¡ÓÖ¿ÉÒÔ±íʾΪ³ËÒÔ£¡£¬ÒÔ´ËÀàÍÆ£¬Ö±µ½1£¡»ò0£¡¡£µÝ¹éº¯Êý¶¨Ò壺¶¨ÒåÒ»¸öµÝ¹éº¯Êýf£¬ÆäÖÐf = n * f£¬µ±n 0ʱ¡£µ±n = 0ʱ£¬f = 1£¬ÕâÊǵݹéµÄ»ù×¼Çé¿ö¡£
4¡¢ÇónµÄ½×³Ë¿ÉÒÔÃèÊöÈçÏ£ºn£¡=n*£¨n-1£©£¡£¨n-1£©£¡=£¨n-1£©*£¨n-2£©£¡£¨n-2£©£¡=£¨n-2£©*£¨n-3£©£¡£¨n-3£©£¡=£¨n-3£©*£¨n-4£©£¡...2£¡=2*1£¡1£¡=0£¡0£¡=1 1£¡=1 Èç¹û°Ñn£¡Ð´³Éº¯ÊýÐÎʽ£¬¼´f£¨n£©£¬Ôòf£¨5£©¾ÍÊDZíʾ5£¡¡£
5¡¢´ð°¸£º¿ÉÒÔͨ¹ýµÝ¹éº¯ÊýÀ´¼ÆËãnµÄ½×³Ë¡£ Ê×ÏÈÃ÷È·½×³ËµÄ¶¨Ò壬nµÄ½×³Ë£¨n£¡£©µÈÓÚn³ËÒÔ£¨n-1£©µÄ½×³Ë£¬¼´n£¡ = n * £¨n-1£©£¡ £¬Í¬Ê±0µÄ½×³Ë¹æ¶¨Îª1¡£
6¡¢µ±nµÈÓÚ0»òÕß1ʱ£¬Ö±½Ó·µ»Ø1 £¬ÕâÊǽ׳˵Ļù±¾¶¨Ò壬0µÄ½×³ËºÍ1µÄ½×³Ë¶¼Îª1 ¡£ µ±n´óÓÚ1ʱ£¬Í¨¹ýµÝ¹éµ÷ÓÃfactorial£¨n - 1£© £¬²¢½«½á¹ûÓënÏà³Ë¡£±ÈÈç¼ÆËã5µÄ½×³Ë£¬»áÏȼÆËã4µÄ½×³Ë£¬4µÄ½×³ËÓÖ»áÏȼÆËã3µÄ½×³Ë£¬ÒÔ´ËÀàÍÆ£¬Ö±µ½¼ÆËãµ½1µÄ½×³Ë£¬È»ºóÖð²½»ØÍƵõ½×îÖÕ½á¹û¡£
µÝ¹é·¨ÇónµÄ½×³ËËã·¨
ÇónµÄ½×³Ë¿ÉÒÔÃèÊöÈçÏ£ºn£¡=n*£¨n-1£©£¡£¨n-1£©£¡=£¨n-1£©*£¨n-2£©£¡£¨n-2£©£¡=£¨n-2£©*£¨n-3£©£¡£¨n-3£©£¡=£¨n-3£©*£¨n-4£©£¡...2£¡=2*1£¡1£¡=0£¡0£¡=1 1£¡=1 Èç¹û°Ñn£¡Ð´³Éº¯ÊýÐÎʽ£¬¼´f£¨n£©£¬Ôòf£¨5£©¾ÍÊDZíʾ5£¡¡£
Ê×ÏÈÃ÷È·½×³ËµÄ¶¨Ò壬nµÄ½×³Ë£¨n£¡£©µÈÓÚn³ËÒÔ£¨n-1£©µÄ½×³Ë£¬¼´n£¡ = n * £¨n-1£©£¡ £¬Í¬Ê±0µÄ½×³Ë¹æ¶¨Îª1¡£
µÝ¹é·¨ÇónµÄ½×³ËËã·¨¿ÉÒÔÃèÊöÈçÏ£ºËã·¨ÃèÊö£º½×³ËµÄ¶¨ÒåÊÇ£ºn£¡ = n * * * * 1£¬ÌØ±ðµØ£¬0£¡ = 1¡£Ê¹Óõݹ鷨£¬ÎÒÃÇ¿ÉÒÔ½«n£¡±íʾΪn³ËÒÔ£¡£¬¶ø£¡ÓÖ¿ÉÒÔ±íʾΪ³ËÒÔ£¡£¬ÒÔ´ËÀàÍÆ£¬Ö±µ½1£¡»ò0£¡¡£µÝ¹éº¯Êý¶¨Ò壺¶¨ÒåÒ»¸öµÝ¹éº¯Êýf£¬ÆäÖÐf = n * f£¬µ±n 0ʱ¡£
³£¼û´íÎóÑ¡Ïî±æÎöO£¨nlogn£©£º³£¼ûÓÚ·ÖÖÎËã·¨£¨Èç¹é²¢ÅÅÐò£©£¬ÆäµÝ¹éÊ÷Éî¶ÈΪlognÇÒÿ²ã×ܲÙ×÷ÊýΪO£¨n£©¡£µ«½×³ËµÝ¹éδ·Ö¸îÎÊÌâ¹æÄ££¬Ã¿´Î½ö¼õÉÙ1£¬¹Ê²»ÊÊÓá£O£¨n£©£ºÈôÿ´ÎµÝ¹é°üº¬O£¨n£©²Ù×÷£¨ÈçǶÌ×Ñ»·£©£¬Ôò×ܸ´ÔÓ¶ÈΪO£¨n£©¡£
±àдÓÃCÓïÑÔʵÏÖµÄÇón½×½×³ËÎÊÌâµÄµÝ¹éËã·¨
long int fact£¨int n£©{ int x£»long int y£»if£¨n0£©{ printf£¨error£¡£©£»} if£¨n==0£©return 1£»x=n-1£»y=fact£¨x£©£»return £¨n*y£©£»} ÍØÕ¹ÔĶÁ£ºÌص㠵ݹéËã·¨ÊÇÒ»ÖÖÖ±½Ó»òÕß¼ä½ÓµØµ÷ÓÃ×ÔÉíËã·¨µÄ¹ý³Ì¡£
} return n * factorial£¨n - 1£©£»} ±àÒë²¢ÔËÐÐÉÏÊö´úÂ룬¼´¿ÉµÃµ½¼ÆËã½×³ËµÄ½á¹û¡£ÔÚ¶¨Òå½×³Ëº¯Êýʱ£¬ÎÒÃÇÑ¡ÔñʹÓÃ`int`ÀàÐÍ×÷Ϊ·µ»ØÖµÀàÐÍ£¬ÕâÊÇÒòΪ½×³Ë½á¹ûͨ³£²»»á³¬³ö`int`ÀàÐ͵ıíʾ·¶Î§¡£È»¶ø£¬¶ÔÓڷdz£´óµÄÊý×Ö£¬`int`ÀàÐÍ¿ÉÄܻᵼÖÂÒç³ö¡£Òò´Ë£¬ÎÒÃÇÐèÒª¶Ô×î´ó¿ÉÇó½×³ËµÄÊý½øÐÐÏÞÖÆ¡£
Ê×ÏÈ´ò¿ªvc0£¬Ð½¨Ò»¸övcÏîÄ¿¡£½ÓÏÂÀ´ÐèÒªÌí¼ÓÍ·Îļþ¡£Ìí¼ÓmainÖ÷º¯Êý¡£¶¨ÒåÒ»¸öÓÃÀ´Çó½×³ËµÄº¯Êý¡£ÔÚmainº¯Êý¶¨ÒåintÀàÐͱäÁ¿sum¡£µ÷ÓÃfact£¨£©£¬²¢½«·µ»ØÖµ¸³Óèsum¡£Ê¹ÓÃprintf´òÓ¡sum¡£ÔËÐгÌÐò£¬¿´¿´½á¹û¡£