基本求导公式20个(十六个基本初等函数求导公式)

http://www.itjxue.com  2024-06-16 17:39  来源:IT教学网  点击次数: 

基本求导公式18个

1、高等数学导数16个基本公式:y=c,y=0(c为常数)y=x^μ,y=μx^(μ-1)(μ为常数且μ≠0)。y=a^x,y=a^xlna;y=e^x,y=e^x。y=logax,y=1/(xlna)(a0且a≠1);y=lnx,y=1/x。y=sinx,y=cosx。y=cosx,y=-sinx。

2、导数的求导法则 由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、求导注意事项 对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。

4、需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。凹凸性:可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。

考研24个基本求导公式

1、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

2、首先,我们来讨论一阶导数的公式。如果函数f(x)在点x处可导,那么它的一阶导数可以用以下公式表示:f(x)=lim(h→0) [f(x h)?f(x)]/h。这个公式给出了函数在某一点的瞬时变化率,是我们计算其他高阶导数的基础。接下来,我们来研究二阶导数的公式。

3、n阶导数公式:可导的函数f(x),xf(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。

4、泰勒公式是你的级数和无穷小分析的得力工具,尤其是记住那个无∑an x^n形式的简化版。别忘了,ln前的1/2,它源自于等比积分的求导推导。对于三角函数和分式函数的求导与积分,巧妙的换元法和公式记忆将让你事半功倍。初等数学进阶 三角函数的反函数和分式分解在积分问题中扮演重要角色。

5、n阶导数公式包括(u±v)n=un±vn、(Cu)n=Cun等。考研常用的n阶导数公式包括(u±v)n=un±vn,(Cu)n=Cun,(ax)n=ax*lnna(a0),(sinkx)n=knsin(kx+n*π/2)等。若函数f在导数f在点x0可导,则称f在点x0的导数为f在点x0的二阶导数,记作f(x0)。

16个基本导数公式

1、y=c,y=0(c为常数)y=x^μ,y=μx^(μ-1)(μ为常数且μ≠0)。y=a^x,y=a^x lna;y=e^x,y=e^x。y=logax, y=1/(xlna)(a0且 a≠1);y=lnx,y=1/x。y=sinx,y=cosx。y=cosx,y=-sinx。

2、个基本导数公式如下:y=c,y=0(c为常数)。y=x^μ,y=μx^(μ-1)(μ为常数且μ≠0)。y=a^x,y=a^xlna;y=e^x,y=e^x。y=logax,y=1/(xlna)(a0且a≠1);y=lnx,y=1/x。y=sinx,y=cosx。y=cosx,y=-sinx。

3、个基本初等函数的导数公式如下:常数函数y=C的导数是0,即y=0。幂函数y=x^n的导数是y=nx^(n-1)。指数函数y=a^x的导数是y=a^x lna。对数函数y=logax的导数是y=1/x loga e。三角函数y=sinx的导数是y=cosx。

(责任编辑:IT教学网)

更多

相关PowerPoint文章

推荐PowerPoint文章